
Advanced Software Development Workstation
Engineering Scripting Language Graphical Editor

DRAFT Code Documentation

Inference Corporation

8/30/91

(NASA-CR-1903B9) ADVANCED SOFTWARE

DEVELOPMENT WORKSTATION. ENGINEER[NG

SCRIPTING LANGUAGE GRAPHICAL EDITOR: DRAFT

CODE DOCUMENTATION Interim Report (Research

Inst. for Computing and Information Systems)

N92-26182

Unclas

G3/61 0096744

Cooperative Agreemont NCC 9-16
Research Activity No. SE.41

NASA Johnson Space Center

Information Systems Directorate
Information Technolo0y Division

Research Institute for Computing and Information Systems

University of Houston-Clear Lake

INTERIM REPORT

.t

The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information Systems {RICIS) in 1986 to encouragc the NASA

Johnson Space Center (JSC) and local industry to actively support research

in the computing and information sciences. As part of this endeavor, UHCL

proposed a partnership wlth JSC to jointly define and manage an integrated

program of research in advanced data processing technology needed for JSC's

main missions, including administraUve, engineering and science responsl-

bilities. JSC agreed and entered into a continuing cooperaUve agreement

with UHCLbeginning in May 1986, to Jointly plan and execute such research

through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

computing and educational facilities are shared by the two institutions to
conduct the research.

The UHCL/RICIS mission is to conduct, coordinate, and disseminate research

and professional level education in computing and information systems to

serve the needs of the government, industry, cornmunlly and academia.

RICIS combines resources of UI ICL and its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual interest

to its sponsors and researchers. Within UHCL, the mission is being

Implcmcntcd through interdisciplinary Involvemcnt of faculty and students
from each of the four schools: Business and Public Administration, Educa-

Uon, Human Sciences and Ilumanltics, and Natural and Applicd Sciences.

RICIS also collaborates with industry in a companion program. This program

is focused on serving the research and advanced development needs of

industry.

Moreover, UHCL established relationships with other universities and re-

search organizations, having common research interests, to provide addi-

Uonal sources ofexperUse to conduct needed research. For example, UHCL

has entered tnto a special partnership with Texas A&M University to help

oversee RICIS research and education programs, while other research

organizations are involved via the "gateway" concept.

A major role of RICIS then is to find the best match of sponsors, researchers

and research objectlves to advance knowledge tn the computing and Informa-

tion sciences. RICIS, worklngjoinfly with its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-

nical and administrative support to coordinate the research and Integrates

technical results Into the goals ofUttCL. NASA/JSC and industry.

RICIS Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Inference Corporation. Dr. Anthony

Lekkos, Associate Professor, Computer and Information Sciences, served as RICIS

research coordinator.

Funding was provided by the Information Technology Division, Information

Systems Directorate, NASA/JSC through Cooperative Agreement NCC 9-16 between

NASA Johnson Space Center and the University of Houston-Clear Lake. The NASA

technical monitor for this activity was Robert Savely of the Information Technology

Division, Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of UHCL, RICIS, NASA or the United States Government.

Inference Corporation
Owner ralston (Elizabeth Ralston)
Host Quaestor

printer imagen
Date Fri Aug 30 09:13:57 1991

c12 0

cll 0

cl0 0
c9 0

c8 0
c7 0
c6 0

c5 0

c4 0
c3 0

c2 0
cl 1

printwheel sd_courl2
rules no

outlines no

formlength 60
formwidth 80

leftmargin 0
at (0.4 0.25 cc)

window (7.5 10.5 0)

imagespace (0 960 -8 520)
imagesize (7.5 10.5)

jobheader on

pagecollation on
jam/esistance on

language printer

System Version TURBO UltraScript 6.0T Rev. A IP/II, Serial #90:12:48

Page images processed: 88
Pages printed: 88

Paper size (width, height):
2560, 3328

Document length:
136249 bytes

_ug 26 11:50 1991 charles Page 1

;; esl-screens.art

(DEFSCHEMA PANEL-SPEC

, (DISPATCH-TABLE)
, (EXPOSED)

, (HAS-ITEM-SPECS)
, (PANEL-ID)
, (PANEL-NAME)

• (TARGET-POINTER)
, (VIEW-POINTER)

, (DEFAULT-BACKGROUND-COLOR)
(NON-DEFAULT-BACKGROUND-COLOR))

(defschema notes-panel
(is-a panel-spec)

(currently-displayed-component)

)

(defschema component-notes-panel

(instance-of notes-panel)
)

(defsch_ma node-notes-panel
(instance-of panel-spec)
(currently-displayed-node)

)
;has node

(defschema select-constant-value-panel
(is-a modal-panel)

(has-parent-panel) ;pointer to constant-to-node-panel
)

(defschema connector-details-panel
(is-a panel-spec)

(currently-displayed-connector-group) ;value is connector-group
;schema

(connector-reps) ;value is pointer to an array
; of pointers to C

; connector_rep structs -
; see file connector_rep.h

(connector-reps-size) ;size of the array pointed to
; by connector-reps slot

(defschema node-to-node-connector-details-panel

(instance-of connector-details-panel)
(source-node) ;value is node schema
(destination-node) ;value is node schema

(input-port-reps) ;value is pointer to a NULL

; terminated array of pointers to
; C port_rep struct_

(output-port-reps) ;like input-port-reps

Aug 26 11:50 1991 charles Page 2

(defschema constantsqto-node-connector-details-panel
(instance-of connector-details-panel)

(destination-node)
(output-port-reps)

)

(defschema graph-port-to-node-connector-details-panel
(instance-of connector-details-panel)
(destination-node)

(output-port-reps)

)

(defschema node-to-graph-port-connector-details-panel
(instance-of connector-details-panel)
(source-node)

(input-port-reps)

)

(defschema node-details-panel

(instance-of panel-spec)
(for-node)

)

(defschema component-details-panel

(instance-of panel-spec)

(for-component)

)

(defschema graph-port-details-panel
(instance-of panel-spec)

(for-graph)
(input?)

)

(defschema dummy-esl-panel
(instance-of panel-spec)
(view-path)

)
/*

(edit-object)_i_i!_i_ _
(connector-source)
(connector-destination)

file: esl_panels.c

;; sequence, always begins with root-graph
;; and ends with current-graph

Event handling functions for the ESL panels.

*/

#include "esl_panels. h"

Aug 26 11:50 1991 charles Page 3

#include "access_protos. h"

#include "artsymbols.h"

#include "defs. h"

#include "connector_rep. h"

#include "string_utils. h"

#include "type_check. h"

#include "esl_editor_panel. h"

char *strdup(/* char *s */);

#ifdef EXTRA_FUNCT IONS_H

void determine CD panel_type (/* art_symbol panel_schema,

boolean *node_to,

boolean *constant to,

boolean *graph_port_to,

boolean *to_node,

boolean *to_graph_port */);

#endif EXTRA_FUNCTIONSH

*

W*

*/

void determine CD panel_type (art_symbol panel_schema,

boolean *node_to,

boolean *constant_to,

boolean *graph_port_to,

boolean *to_node,

boolean *to_graph_port);

Determines the panel type of a connector details panel.

Where

panel_schema is the schema corresponding to the Connector
Details Panel

node_to, constant_to, graph_port_to, to_node, to_graph_port
are pointers to booleans that are set by this function. Only one of

the "<x> to" variables will be set TRUE and only one of the "to_<x>"

variables will be set TRUE. All others will be set FALSE

void determine_CD_panel_type (panel_schema,
node to, constant_to, graph_port_to,

to_node, tograph_port)

art_symbol panel_schema;

boolean *node to, *constant_to, *graph_port_to;

boolean *to_node, *to_graph_port;

[
*node_to = *constant_to - *graph_port_to = *to_node - *to_graph_port

Aug 26 11:50 1991 charles Page 4

- 0L;

if (a_eq(panel_schema, NODE TO NODE_CONNECTOR_DETAILS_PANEL))
*node to = *to node = IL;

else if (a_eq(panel_schema,
CONSTANTS TO NODE_CONNECTOR_DETAILS_PANEL))

*constant_to m *to_node - IL;

else if (a_eq(panel_schema,

GRAPH_PORT TO NODE_CONNECTOR_DETAILS_PANEL))
*graph_port_to - *to_node = IL;

else /* (a_eq(panel_schema,
NODE TO GRAPH PORT_CONNECTOR_DETAILS_PANEL)) */

*node_to _ *to_graph_port _ IL;

/*

*/
Common elements:

/*

EVENT HANDLER CD_Selected_Connector (art_symbol panel_schema,
- char *value);

This function handles the "item has been selected" event for the

Connectors textlist. All four types of Connector Details Panels have

_his field.

Where:

panel_schema is the schema corresponding to the Connector
Details Panel

value is the string that was selected on the Connectors textlist

** In all cases, the Notes field is populated with the notes for the

Aug 26 11:50 1991 charles Page 5

selected connector.

If the panel is a "Node To" CD Panel, then the corresponding source

port item in the Souces textlist is selected.

If the panel is a "To Node" CD Panel, then the corresponding
destination port item in the Destinations textlist is selected.

If the panel is a "Constant to" CD Panel, then the Constant_Value text
field is populated with the source of the connector item selected.

** If the panel is a "Graph Port" CD Panel, then the Graph_Port_Name
** field is populated with the source of the selected connector item.

**

*/

The source and destination of the selected connector menu item are

extracted with extract connector_source() and
extract connector_destination(). The strings returned by these

functions are freed here.

The value returned by connector_menu_item_[sourceldestination] is
suitable for the Sources textlist (Node to panels), the Destination

textlist (to Node panels), and Constant Value field (Constant to

panels), but not for the Graph Port Name field. For this field it
must have the type information stripped off. This is done with

extract_port_name(). The string returned by this function must
be freed here.

The associated notes are found by using search_for_connector_rep() to

get a pointer to the connector_rep structure. The notes field
contains the notes.

It is an internal error for there to be no connector_rep associated

with the selected connector menu item (if search_for_connector_rep()
returns NULL. The best behavior for this case is to do nothing.

EVENT HANDLER CDSelected_Connector (panel_schema, value)

art_symbol panel_schema;
char *value;

[
connector_rep *this_connector_rep;
char *source, *destination;

char *notes;

char *graph_port_name;
boolean node_to, constant_to, graphport_to, to_node, to_graph_port;

char warning_message[LONG_STRING_LENGTH];

if (!strcmp(value, NO_CONNECTORS_VALUE))
return;

this_connector_rep - search_for_connector_rep(panel_schema, value);

if (this_connector_rep)

Aug 26 11:50 1991 charles Page 6

}
else

[

if (this_connector_rep->notes)
update_text_field(panel_schema, NOTES_FIELD,

this_connector_rep->notes);
else

update_text_field(panel_schema, NOTES_FIELD, "");

sprintf(warning_message,
"WARNING: Cannot find connector_rep for menu-item = %s\n",

value);

display_warning_message(panel_schema, warning_message);
return;

}

determine CD panel_type (panel_schema,
&node_to, &constant_to, &graph_port_to,
&to_node, &to_graph_port);

source = extract connector source (value);
destination _ ext-ract connector destination (value);

if (node_to)
select item in textlist(panel_schema, SOURCES_FIELD, source);

else if (constant_to)

update_text_field(panel_schema, CONSTANT_VALUE_FIELD, source);

else /* (graph_port_to) */ _

graph_port_name - extract_port_name(source);

update_text_field(panel_schema, GRAPH_PORT_NAME_FIELD,
graph_port_name);

rtn_memory(graph_port_name);

if (to_node)

select_item_in_textlist(panel_schema, DESTINATIONS_FIELD,
destination);

else /* (to_graph_port) */
[

graph_port_name - extract_port_name(destination);
update_text_field(panel_schema, GRAPH_PORT_NAME_FIELD,

graph_port_name);
rtn_memory(graph_port_name);

rtn_memory(source);
rtn_memory(destination);

/*

** EVENT_HANDLER CD_Changed_Notes (art_symbol panel_schema,

Aug 26 11:50 1991 charles Page 7

** char *value);

** This function handles-the "text field has been changed and exited" event
** for the Notes tex_ field.

** Where:

** panel_sche-ma is the schema corresponding to the Connector
** Details Panel

** value is the string that has been entered in the Notes field

If an item is selected in the Connectors textlist, then the new value

of the notes must be associated with that connector.

If no item is selected in the Connectors textlist, then no action is

needed.

COMMENTS:

* Mechanism needed to associate connectors with notes.

*/

The selected connectors textlist item is found with

get_value_from_field(). The connector_rep structure is found with

search_for_connector_rep(). The returned connector_rep's notes member
contains the notes for that connector item. The old notes are freed

and a pointer to the new notes is stored in the notes member.

It is an internal error for there to be no connector_rep structure
associated with any item in the connectors textlist. In this case,

search_for_connnector_rep() will return NULL. The best behavior for
this case is to do nothing.

EVENT HANDLER CD_Changed_Notes (panel_schema, value)

art_symbol panel_schema;
char *value;

[
char *connector menu_item;

connector_rep *this_connector_rep;
char *old_notes;

connector menu item - get_selected_item_from_textlist

(panelZschema , CONNECTORS_FIELD);

if (connector_menu_item)
[

this_connector_rep -
search_for_connector_rep(panel_schema,

connector_menu item);

Aug 26 11:50 1991 charles Page 8

if (this_connector_rep)
[

old notes = this_connector_rep->notes;

if (old_notes)

rtn_memory(old_notes);
this_connector_rep->notes = strdup(value);

/*

*W

EVENT_HANDLER CD_Selected_Connect (art_symbol panel_schema);

This function handles the "button has been selected" event for the

Connect button. Normally this causes a new connector object to be

defined.

Where:

panel_schema is the schema corresponding to the Connector
Details Panel

W*

I. The connection should satisfy some validity checking.

Since data type is the only thing that can be checked here and it is
checked when items are selected in the Sources and Destinations

textlists (or Constant Value field or Graph Port field), all that need

be done is verify that both the "source" field and "destination" field
have values.

If this is not the case, a warning panel should be popped up

explaining the problem. No connector is defined.

2. The connector is now defined and the contents of the notes field

associated with the new connector.

3. The Connections textlist is populated with a new item for the new
connector definition. The new item is selected.

COMMENTS:

* Mechanism needed to define and undefine connectors.

** If a value is already selected on the connectors textlist, do nothing.

** Type checking is done by seeing that the source and destination fields
** have values. (Depending on the panel type, the source is either the

Aug 26 11:50 1991 charles Page 9

*/

selected item on the Sources textlist, the value of the Constant Value

field, or the value of the Graph Port Name field. The Destination is

either the selected item on the Destinations textlist or the value of

the Graph Port Name field.

If the source or destination are a Graph Port, the type information is

added first to the port name with make_port_type_menu item and the

type of the connecting node port source or destination. Then, the new
connector menu item is constructed with make_connector_menu_item().

The type name is not added to the Constant Value Field value on

Constant to Node panels.

The function search_for_connector_rep() is used to see if this

connector has been previously defined for this panel. If so, then

re associate connector() is called to reassociate the connector item

and the memor-y returned by make_connector_menu_item is freed()

If not, the function add new_connector_rep() is used to create the new

connector_rep structure.

The connectors textlist is repopulated by populate_connectors_textlist().

Finally the new connector item is selected in the connectors textlist

with select item in textlist().

EVENT HANDLER CD_Selected_Connect (panel_schema)

art_symbol panel_schema;

[
char *connector menu item;

char *source, *destination, *graph_port_name;

char *other_type;

connector_rep *this_connector_rep;

char *notes;

boolean node_to, constant_to, graph_port_to, to node, to_graph_port;

art_symbol connector_group, source_schema, destination_schema;

connector menu item -

get_selected_item_from_textlist(panel_schema,
CONNECTORS_FIELD);

W! I!

if (connector_menu_item && strcmp(connector_menu_item,))

return;

determine CD panel_type (panel_schema,
&node_to, &constantto, &graph_port_to,

&to_node, &to_graph_port);

if (node_to)
source = get_selected_item_from_textlist (panel_schema,

SOURCES_FIELD);

else if (constant_to)

source - get_value_from_field (panel_schema,

CONSTANT_VALUE_FIELD);

Aug 26 11:50 1991 charles Page i0

else /* (graph_port_to) */

source m get_value_from_field (panel_schema,
. GRAPH_PORT_NAME_FIELD);

if (to_node)
destination -

get_selected_item_from_textlist (panel_schema,
DESTINATIONS_FIELD);

else /* (to_graph_port) */
destination - get_value_from_field (panel_schema,

GRAPH_PORT_NAME_FIELD);

if (!source II !destination II
!strcmp(source, "") II !strcmp(destination, ""))

[
display_warning_message(panel_schema,

"ERROR: Must select the source and destination of the connector before hitting C

return;

}

if (graph_port_to)
[

other_type - extract_type_name(destination);

graph_port_name - source;
source - make_port_type_menu_item (source, other_type);

rtn_memory(other_type);
}
else if (to_graph_port)

[
other_type - extract_type_name(source);

graph_port_name - destination;
source m make_port_type_menu_item (destination, other_type);

rtn_memory (other_type);

connector_menu_item - make_connector_menu_item(source, destination);

if (graph_port_to)

rtn_memory(source);
else if (to_graph__Dort)

rtn_memory(destination);

notes - get_value_from field (panel_schema, NOTES_FIELD);
this_connector_rep - search_for_connector_rep(panel_schema, connector_me

if (visible_connector_p (this_connector_rep))

[
re associate connector (this_connector_rep, notes);

rtn_memory(connector_menu_item);

}
else

add_new_connector_rep (panel_schema,

Aug 26 11:50 1991 charles Page ii

connector_menu_item,

NULL,

notes);

/* repopulate... */

connector_group m a_get_schema_vaiue(panel_schema,

CURRENTLY DISPLAYED_CONNECTOR GROUP);

source schema = a_get_schema_value (connector_group, SOURCE_NODE);
destination schema

a_get_schema_value (connector_group, DESTINATION_NODE);

populate_connectors_textlist (panel_schema,

source_schema, destination_schema);

select_item in textlist(panel_schema, CONNECTORS_FIELD,

connector_menu_item);

/*

EVENT_HANDLER CD_Selected_Disconnect (art_symbol panel_schema);

This function handles the "button has been selected" event for the
Disconnect button for the Node To Node Connector Details Panel.

Normally this causes a defined connector object to become undefined.

Where:

panel_schema is the schema corresponding to the Connector
Details Panel

This event is valid if an item is selected on the Connectors textlist.

If this is not the case, then a warning panel is popped up and no
connector is undefined.

Otherwise, the selected connector is undefined. Items are unselected

in the Connectors, Sources, and Destinations textlist (or constant

value field is populated with an empty string, or graph port name

field is populated with an empty string). The Notes field is

populated with an empty string.

COMMENTS:

"* Mechanism needed to define and undefine connectors.

** The function search_for_connector_rep() is used to find the

** connector_rep associated with the selected item in the connectors
** textlist. The connector is disassociated with

** disassociate_connector_rep() and the connectors textlist is

** repopulated by populate_connectors_textlist().

Aug 26 11:50 1991 charles Page 12

*/

The source and destination fields are "cleared." In the case of the

Sources textlist and Destinations textlist, the selection is cleared.
In the case of the Constant Value text field or the Graph Port Name

text field, the fields are populated with the empty string.

It is an internal error for there to be no connector_rep structure
associated with any item in the connectors textlist. In this case,

search_for_connnector_rep() will return NULL. The best behavior for
this case is to do nothing.

EVENT HANDLER CD_Selected_Disconnect (panel_schema)

art s_bol panel_schema;
[

char *connector menu_item;

connector_rep *this_connector_rep;
art_symbol connector_group, source_schema, destination_schema;
boolean node_to, constant_to, graph_port_to, to_node, to_graph_port;

connector_menu item -
get_se[ected_item_from_textlist (panel_schema,

CONNECTORS_FIELD);

if (!connector_menu_item II !strcmp(connector_menu_item, ""))
return;

this_connector_rep - search_for_connector_rep (panel_schema,
connector_menu_item);

if (visible_connector_p (this_connector_rep))

[
disassociate_connector_rep (panel_schema,

this_connector_rep);

/* repopulate... */
connector_group - a_get_schema_value(panel_schema,

CURRENTLY_DISPLAYED_CONNECTOR_GROUP);

source_schema - a_get_schema_value (connector_group,
SOURCE_NODE);

destination_schema -
a_get_schema_value (connector_group,

DESTINATION_NODE);

populate_connectors_textlist (panel_schema,
source_schema,

destination_schema);

determine CD panel_type (panel_schema,
&node_to, &constant_to,

&graph_port_to,
&to_node, &to_graph_port);

if (node_to)
unselect_items on textlist(panel_schema,

SOURCES_FIELD);

else if (constant_to)
update_text_field(panel_schema,

CONSTANT_VALUE_FIELD, "");

else /* (graph_port_to) */

Aug 26 11:50 1991 charles Page 13

updatetext_field(panel_schema,

GRAPH_PORT_NAME_FIELD, "");

if (Go_node)

unselect items on textlist(panel_schema,

DESTINATIONS_FIELD);

else /* (to_graph_port) */

update_text_field(panel_schema,

GRAPH_PORT_NAME_FIELD, "");

update_text_field (panel_schema, NOTES_FIELD, "");

/*

** EVENT_HANDLER CD_Selected_Ok (art_symbol panel_schema);

** This function handles the "button has been selected" event for the Ok

** button.

** Where:

** panel_schema is the schema corresponding to the Connector
** Details Panel

W*

It has the effect of an Apply followed by a Close.

All newly defined connectors must be created and all freshly deleted

connectors can now be destroyed.

After the connectors have been changed, constraints must be allowed to

fire.

If the Apply causes constraints to be violated the panel should not be
closed. If no constraints are violated, the panel is dismissed.

COMMENTS:

* Mechanism needed to define and undefine connectors.

* Mechanism needed to apply constraints.

*/

Connectors are created and destroyed with

create_and_destroy_connectors(). Constraints are propogated with

propogate_constraints(). If no constraints are violated, CD_Close()

is called to dismiss the panel.

Aug 26 11:50 1991 charles Page 14

EVENT HANDLER CD_Selected_Ok (panel_schema)

art_symbol panel_schema;

[
create_and_destroy_changed_connectors (panel_schema);

if (propogate_constraints())
CD_Selected_Close (panel_schema);

}

*

** EVENT_HANDLER CD_Selected_Apply (art_symbol panel_schema);
**

** This function handles the "button has been selected" event for the

** Apply button.

** Where:

** panel_schema is the schema corresponding to the Connector
** Details Panel

All newly made connectors must be created and all freshly deleted

connectors can now be destroyed.

After the connectors have been changed, constraints must be allowed to
fire.

*w

COMMENTS:

- Mechanism needed to define and undefine connectors.

** - Mechanism needed to apply constraints.

**

**

Connectors are created and destroyed with

create_and_destroy_connectors(). Constraints are propogated with

propogate_constraints().

EVENT HANDLER CD_Selected_Apply (panel_schema)

art_symbol panel_schema;
[

create_and_destroy_changed_connectors (panel_schema);

propogate_constraints();
}

/*

Aug 26 11:50 1991 charles Page 15

EVENT_HANDLER CD_Selected_Close (panel_schema);

This function handlesthe "button has been selected" event for the

Close button. -

Where:

panel_schema is the schema corresponding to the Connector
Details Panel

** Dismisses the Connector_Details_Panel.

** Memory used by the connector_rep structures is freed with

** free_up reps(). The panel is dismissed with

** dispose of screen().

./

EVENT_HANDLER CD_Selected_Close (panel_schema)

art_symbol panel_schema;

[
free_up_reps(panel_schema);

dispose of screen(panel_schema);

}

/*

*/
Node To, To Node features

/*

** Where:
**

EVENT_HANDLER CD_Selected_Source (art_symbol panel_schema,

char *value);

EVENT_HANDLER CD_Selected_Destination (art_symbol panel_schema,

char *value);

These functions handle the "item has been selected" event for the

Sources textlist and the Destinations textlist fields respectively on

the Node_ToNode Connector Details Panel.

panel_schema is the schema corresponding to the Connector
Details Panel

value is the string that was selected on the Sources
or Destinations textlist

Aug 26 11:50 1991 charles Page 16

**

First, if an item is selected on the Connections textlist, then it is
unselected and the Notes Field is cleared.

For the case of CD_Selected_Source():

This function then parses the menu item to determine the type

of port which has been selected. If the panel is a To Node panel,
then it retrieves any selected menu item from the Destinations

textlist and parses that to determine the type. If the types are not

compatible or if there is already a connector defined with that
destination and a different source (this would correspond to an

unallowable merge), then any the item selected on the Destinations
Textlist is unselected.

If the above results in no item being selected on the

Destinations textlist, then a check is made as to whether the selected
source is the source for a defined connection. If so, that connection

is selected and the Destinations textlist and Notes field populated

accordingly.

If an item is still selected on the Destinations textlist,

then a check is made as to whether the Source/Destination pair

corresponds to an item already on the Connections textlist. If so,
that item is selected and the panel repopulated.

If the panel is a To Graph Port panel, then ...

For the case of CD_Selected_Destination():

(ed: must explain how the above is changed.
about the Constant Value field)

Also must explain

The data type of menu items are extracted with extract_type_name().
The returned string is freed here.

An existing connector object is searched for by either

search_for_connector_rep_by_source() or
search_for_connector_rep_by_destination(). The returned connector_rep
structure will have the connector menu item to be selected and the

corresponding notes.

To check types of two node ports, the function type_check_two_ports()

"is used. (ed: this function is undefined as of yet.) For graph port
source or destination, data type checking is done with

type_check_graph_port(). For constant source, data type checking is
done with type_check_constant().

COMMENTS:

- The type_check constant() and type_check_graph_port() currently

accept strings for data types, but I think they'll really want a

Aug 26 11:50 1991 charles Page 17

*/

DATA TYPE schema. The PORT schema contains a PORT DATA TYPE slot that

points to the DATA_TYPE schema for the PORT. But gettin--g to the PORT

schema from the the port name is difficult.

- A port_rep structure is needed when defining graph ports. Will be

defined later.

EVENT HANDLER CD_Selected_Source (panel_schema, value)

art_symbol panel_schema;

char *value;

char *selected type;

char *destination_menu_item;

char *destination_type;

char *destination of source_connector;

boolean to_node, to_graph_port;

connector_rep *conn_rep;

if (!strcmp(value, NO_PORTS_VALUE))

return;

to node - a_eq(panel_schema, NODE TO NODE_CONNECTOR_DETAILS_PANEL);

to_--graph_port - a_eq(panel_schema,

NODE TO GRAPH_PORT._CONNECTOR_DETAILS_PANEL);

unselect_items on textlist (panel_schema, CONNECTORS_FIELD);

selected_type = extract_type_name(value);

if (to_node)
[

destination menu item =

get_selected_item_from_textlist (panel_schema,

DESTINATIONS_FIELD);

if (destination_menu_item &&

strcmp(destination_menu_item, ""))

[
destination_type -

extract_type_name(destination_menu_item);

conn_rep - search_for_conhector_rep_by_destination
(panel_schema, destination_menu_item);

if (visible_connector_p (conn_rep) II

!compare_data_types(selected_type,
destination_type))

unselect_items on textlist(panel_schema,
DESTINATIONS_FIELD);

destination menu item - NULL;

rtn_memory(destination_type);

Aug 26 11:50 1991 charles Page 18

if (!destination_menu_item)
[

conn_rep - search_for_connector_rep_by_source

(panel_schema, value);

if (visible_connector_p (conn_rep))

[
select_item in textlist(panel_schema,

CONNECTORS_FIELD,

conn_rep->menu_item);

destination of source connector -
extract connector destination

(conn_rep->menu_item);

select_item in textlist(panel_schema,
DESTINATIONS FIELD,

destination of source_connector);

rtn_memory(destination of source_connector);

]
else

[

if (conn_rep->notes)

update_text_field(panel_schema,

NOTES_FIELD,

conn_rep->notes);

else

update_text_field(panel_schema,

NOTES_FIELD, "");

conn_rep - search_for_connector_rep_by_source

(panel_schema, value);

if (visible_connector_p (conn_rep))

[
destination of source_connector -

extract_connector_destination

(conn_rep->menu_item);

if (!strcmp(destination_menu_item,

destination of source_connector))

select item in textlist

(panelschema,

CONNECTORS_FIELD,

conn_rep->menu_item);

if (conn_rep->notes)

update text field

- (panel_schema,

NOTES_FIELD,

conn_rep->notes);

else

hug 26 11:50 1991 charles Page 19

update_text field
(panel_schema,

11 I!
NOTES_FIELD,);

}
else

rtn_memory(destination of source_connector);

/* MAS: Must figure this out later */

rtn_memory(selected_type);

EVENT HANDLER CD Selected_Destination (panel_schema, value)

art_symbol panel_schema;

char *value;

[
char *selected_type;

char *source_menu_item;

char *source_type;
char *source of destination_connector;

boolean to_node, to_graph_port;

connector_rep *conn_rep;

if (!strcmp(value, NO_PORTS_VALUE))

return;

to node - a_eq(panel_schema, NODE TO NODE_CONNECTOR_DETAILS_PANEL);

to-_graph_port - a_eq(panel_schema,
NODE TO GRAPH_PORT_CONNECTOR_DETAILS_PANEL);

unselect_itemson_textlist (panel_schema, CONNECTORS_FIELD);

selected_type - extract_type_name(value);

if (to_node)

[
source_menu item -

get-_selected_item_from_textlist (panel_schema,

SOURCES_FIELD);

if (source_menu_item &&

strcmp(source_menu_item, ""))

[
source_type -

extract_type_name(source_menu_item);

conn rep - search_for_connector_rep_by_source

-- (panel_schema, source_menu_item);

if (visible_connector_p (conn_rep) II

Aug 26 11:50 1991 charles Page 20

!compare_data_types(selected_type, source_type))

unselect_items on textlist(panel_schema,
SOURCES_FIELD);

source_menu_item - NULL;

rtn_memory(source_type);

if (!source_menu_item)

[
conn_rep - search_for_connector_rep_by_destination

(panelschema, value);
if (visible_connector_p (conn_rep))
[

select_item in textlist(panel_schema,

CONNECTORS_FIELD,
conn_rep->menu_item);

source of destination connector -

extract connector source

(conn_rep->menu_item);

select_item in textlist(panel_schema,

SOURCES_FIELD,
source of destination_connector);

rtn_memory(sourceof_destination_connector);.

}
else

{

if (conn_rep->notes)
update_text_field(panel_schema,

NOTES FIELD,

conn_rep->notes);
else

update_text_field(panel_schema,
NOTES_FIEI_, "");

conn_rep - search_for_connector_rep_by_destination

(panel_schema, value);

if (visible_connector_p (conn_rep))
[

source of destination connector -

extract_connector_source

(conn_rep->menu_item);

if (!strcmp(source_menu_item,
source of destination_connector))

[
select item in textlist

Aug 26 11:50 1991 charles Page 21

(panel_schema,

CONNECTORS_FIELD,

conn rep->menu_item);

if (conn_rep->notes)

update_text_ field

(panel_schema,

NOTES_FIELD,

conn_rep->notes);

else

update_text_field

(panelschema,

NOTES_FIELD, "");

}
else

rtn_memory(source of destination_connector);

/* MAS: Must figure this out later */

rtn_memory(selected_type);

*

W*

WW

EVENT_HANDLER CD_Selected_Source_Node_Details (art_symbol panel_schema);

EVENT_HANDLER CD_Selected_Destination_Node_Details

(art_symbol panel_schema);

These functions handle the "button has been selected" event for the

Source Node Detailsbutton and the Destination Node Details button.

Where:

panel_schema is the schema corresponding to the Connector
Details Panel

It should pop up a Node Details Panel for the source or destination of

the connector group that the Connector_Details_Panel is for.

COMMENTS:

* Mechanism needed to find the Source and Destination of the connector

group a Connector Details Panel manages.

** The panel's CLrRRENTr-_Y_DISPI._YEDCONNECTOR_GROUP slot contains the
** connector group schema. The connector group schema's SOURCE_NODE slot

Aug 26 11:50 1991 charles Page 22

*/

contains the source node of the connector group and the

DESTINATION_NODE slotcontains the destination node of the connector

group.

Uses populate_new_node_details_panel() to popup the new Node Details
Panel.

EVENT HANDLER CD_Selected_Source Node_Details (panel_schema)

art_symbol panel_schema;
[

art_symbol connector_group, source;

connector_group -
a_get_schema_value(panel_schema,

CURRENTLY_DISPLAYED_CONNECTOR_GROUP);
source _ a_get_schema_value(connector_group, SOURCE_NODE);

if (a_schemap(source))
populate_new_node_details_panel(source);

EVENT HANDLER CD_Selected_Destination_Node_Details (panel_schema)
art_symbol panel_schema;
[

art_symbol connector_group, destination;

connector_group -
a_get_schema_value(panel_schema,

CURRENTLY_DISPLAYED_CONNECTOR_GROUP);

destination = a_get_schema_value(connector_group, DESTINATION_NODE);

if (a_schemap(destination))
populate_new_node_details_panel(destination);

*

** Constant To features:

*/

*

** EVENT_HANDLER CD_Changed_Constant_Value (art_symbol panel_schema,
** char *value);

This function handles the "text field has been changed and exited"

event for the Constant Value field in the Constant to Node Connector

Details Panel.

Where:

panel,schema is the schema corresponding to the Connector

Aug 2_ 11:50 1991 charles Page 23

*******W

Details Panel

value is the string that was entered into the Constant Value field

If no item is selected in the Destinations textlist then do nothing.

Otherwise, value is type checked against the type of the selected item

in the Destinations textlist. If the type is bad, a warning panel is

popped up and the previous value is restored.

If the type is ok and an item is selected in the Connections textlist,
then the connector item is redefined to have the new constant value

source and the Connections textlist is repopulated.

COMMENTS:

* Type checking mechanism needed

*W

*/
t

Uses extract_type_name() to get the type of the selected item
in the destinations textlist. Frees the returned string when done.

Uses type_check_constant() to check the data types.

If an item is selected in the Connections textlist, then uses

search_for_connector_rep() to get the connector rep, from which one

can get to the CONNECTOR schema. The CONNECTOR schema's SOURCE_PORT
slot contains the constant value which needs to be changed.

COMMENTS:

- The function type_check_constant() takes string data type, but

probably wants the DATA_TYPE schema. How to get the schema from the

string is a problem. Mentioned earlier.

EVENT HANDLER CD_Changed_Constant_Value (panel_schema, value)

art_s_bol panel_schema;

char *value;

[}

/*

EVENT HANDLER CD_Selected_Select_Constant_Value

(art_symbol panel_schema);

This function handles the "button has been selected" event for the

Constant Value button on the Constant to Node Connector Details Panel.

Aug 26 11:50 1991 charles Page 24

** Where:

** panel_schema-is the schema corresponding to the Connector
** Details Panel

If no item is selected in the Destinations textlist, then popup a

warning panel and return.

Otherwise, popup a Select Constant Value Panel for the type of the
selected item in the Destinations textlist.

*/

Uses extract_type_name() to get the type of the selected item
in the destinations textlist. Frees the returned string when done.

Uses select_constant_value_modal_panel() to popup the new panel and
allow the user to select a value. If the value returned is non-NT/LL,

then it is populated to the Constant Value field and the string is
freed.

Once the field is populated, the function CD_Changed_Constant_Value()
will need to be invoked.

COMMENTS:

- Once again, data type info_tion is passed as a String instead of
as a schema. Mentioned earlier.

EVENT_HANDLER CD_Selected_Select_Constant_Value (panel_schema)
art_symbol panel_schema;
[}

/*

,/
Graph Port features:

/*

EVENT_HANDLER CD_Changed_Graph_Port_Name (art_symbol panel_schema,
char *value);

This function handles the "text field has been changed and exited"

event for the Graph Port Name field in the Graph Port to Node
Connector Details Panel.

Where:

Aug 25 11:50 1991 charles Page 25

** panel_schema is the schema corresponding to the Connector
** Details Panel

** value is the string that was entered into the Graph Port Name field

*W

WW

If no item is selected in the Destinations textlist then do nothing.

Otherwise, value is type checked against the type of the selected item

in the Destinations textlist. Since graph ports can have any type,

the only problem can be if the graph port name is already used in a

connection and that connection has different type. In this case, pop

up a warning panel, and restore the previous value of the Graph Port

Name field.

If the type is ok and an item is selected in the Connections textlist,

then the connector item is redefined to have the new graph port source

and the Connections textlist is repopu!ated.

(ed: Is changing graph port names desirable? On second thought I say no.)

If no item is selected in the Destinations textlist and the Graph Port

is already connected to a port on the Destination node, then the

corresponding items in the Connections textlist and the Destinations
textlist are selected and the Notes field is populated with the notes

for that connector.

Uses type_check_graph_port() to check the graph port type.

_ses search_for_connector_rep_by_source() or

search_for_connector_rep_by_destination() to see if the graph port is

already connected.

./

EVENT HANDLER CD_Changed_Graph_Port_Name (panel_schema, value)

art_symbol panel_schema;
char *value;

[}

*

EVENT_HANDLER CD_Selected_Graph_Port_Details (art_symbol panel_schema);

This function handles the "button has been selected" event for the

Graph_Port_Details button.

Where:

Aug 26 11:50 1991 charles Page 26

** panel_schema is the schema corresponding to the Connector
** Details Panel

W***

It should pop up a Grpah Port Details for the graphs input ports.

COMMENTS:

- Mechanism needed to find the Source and Destination of the connector

group a Connector Details Panel manages.

,/

The Panel's CURRENTLY_DISPLAYEDCONNECTOR_GROUP slot contains the
connector group for the panel. The connector group's ON_GRAPH slot

contains the graph name.

Uses populate_graph_port_details() for the new panel. Must determine
if this is a Node To Graph Port or Graph Port to Node panel, for the

'input' argument to populate_graph_port_details().

EVENT HANDLER CD_Selected_Graph_Port_Details (panel_schema)

art_symbol panel_schema;
{}

*/

/*

Node Details Panel

EVENT_HANDLER ND_Name_Changed (art_symbol panel_schema,
char *value);

This function handles the "text field has been changed and exited"

event for the Name field in the Node Details Panel.

Where:

panel_schema is the schema corresponding to the Node Details Panel

value is the string that was entered into the Name field

W***

** The name associated with the node must be changed when this happens.
**

** COMMENTS:

Aug 26 11:50 1991 charles Page 27

** - Need a mechanism to change the name of a node.

*/

The panel schema's FOR_NODE slot contains a pointer to the node.
node's NAME slot contains the name.

The

If this is for the DUMMY ESL EDITOR, then the DUMMY ESL PANEL's NODES

textlist must be repopulated-with populate_nodes_textli_t().

COMMENTS:

- A mechanism is still needed for the graphic element.

EVENT HANDLER ND_Name_Changed (panel_schema, value)

art_symbol panel_schema;
char *value;

[
art_symbol node, on_graph;

node - a_get_schema_value(panel_schema, FOR_NODE);

on_graph = a_get_schema_value(node, ON_GRAPH);

if (find_node on graph(on_graph, value))

[
display_warning_message(panel_schema,

"ERROR: Node by this name already exists.");

update_text_field(panel_schema, NAME_FIELD,

a_string_value (a_get_schemavalue(node, LABEL)));

return;

else

a_modify_schema_value(node, LABEL, a_art_string(value), IL);

#ifdef DUMMY_ESL_EDITOR

populate_nodestextlist(DUMMY_ESL_PANEL, on_graph);

#endif DUMMY_ESL_EDITOR

}

#ifdef NOTNEEDED_NOW

/*

EVENT_HANDLER ND_Selected_Input_Port (art_symbol panel_schema,

char *value);

EVENT_HANDLER ND_Selected_Output_Port (art_symbol panel_schema,

Aug 26 11:50 1991 charles Page 28

** char *value);

** These functions l_ndles the "itoml has been selected" event for the Input

** Ports textlist and Output Ports textlist on the Node Details Panel.

** Where:

** panel_schema is the schema corresponding to the Node Details Panel

** value is the string that was selected in the Input Ports or

** Output Ports textlist

** Nothing need be done on this event.
./

EVENT HANDLER ND_Selected_Input_Port (panel_schema, value)

art_symbol panel_schema;
char *value;
[]

EVENT HANDLER ND_Selected_Output_Port (panel_schema, value)

art_symbol panel_schema;
char *value;
[}

#endif NOT NEEDED NOW

/*

EVENT HANDLER ND_Selected_Input_Port Connector Details

(art_symbol panel_schema) ;

EVENT_HANDLER ND_Selected_Output_Port_Con hector_Detail s
(art_symbol panel_schema) ;

These functions handle the "button has been selected" event for the

Input Ports Connector Details button and Output Ports Connector Detaiis
button.

Where:

panel_schema is the schema corresponding to the Node Details Panel

A Connector Details Panel is popped up for the connector group
corresponding to the selected item in the Input Ports or Output Ports
textlist. If no item is selected or if the port is unconnected a

warning panel is popped Up.

** The panel's FOR. NODE slot contains a pointer to the node that the

Aug 26 11:50 1991 charles Page 29

W*

W*

panel is for.

The destination of the selected item is found by using

port_status_connected_to(). If it returns NULL, then the port is

unconnected and a warning panel should be popped up.

After finding the correct connector group, a Connector Details Panel

is popped up with populate_new_connector_details_panel().

COMMENTS:

- How to find the connector group?

Find the graph schema. Iterate over the values in its

HAS CONNECTOR GROUPS slot, until one is found that has the correct

source and destination.

EVENT HANDLER ND Selected_Input_Port Connector Details (panel_schema)

art_symbol panel_schema; - -

[}

EVENT HANDLER ND_Selected_Output_Port_Connector_Details (panel_schema)

art_symbol panel_schema;

[}

*

** EVENT_HANDLER ND_Selected_Component_Details (art_symbol panel_schema);

** This function handles the "button has been selected" event for the

** Component Details button.

** Where:

** panel_schema is the schema corresponding to the Node Details Panel

** "A Component Details Panel is popped up for the node's component.

** The panel's FOR_NODE slot contains a pointer to the node schema that

** the panel is for. If the node is a subprogram node, then the

** component will be pointed to by the value in the USES SUBPROGRAM slot.

** Otherwise, the node must be an special ESL node (if, select, etc) and

** a warning panel should be popped up.

** The Component Details Panel is popped up with

** populate_new_component_details_panel()

Aug 26 11:50 1991 charles Page 30

,/

EVENT HANDLER ND_Selected_Component_Details (panel_schema)

art_symbol panel_schema;

[}

/*

** EVENT_HANDLER ND_Selected_Notes (art_symbol panel_schema);
**

** This function handles the "button has been selected" event for the

** Notes... button.

** Where:

** panel_schema is the schema corresponding to the Node Details Panel

*/

A Node Notes Panel is popped up for the node's notes.

The panel's FOR_NODE slot conatins a pointer to the node schema that

the panel is for. The Node Notes Panel is popped up with

populate_new_node_notes_panel()

EVENT HANDLER ND_Selected_Notes (panel_schema)

art_symbol panel_schema;

[}

*

*w

*/

EVENT_HANDLER ND_Selected_Close (art_symbol panel_schema);

This function handles the "button has been selected" event for the

Close button.

Where:

panel_schema is the schema corresponding to the Node Details Panel

Dismisses the Node Details Panel.

The panel is dismissed with dispose of screen()

_NT HANDLER ND_Selected_Close (panel_schema)

art_symbol panel_schema;

[
dispose of screen(panel_schema);

Aug 26 11:50 1991 charles Page 31

}

** Component Details Panel

*/

#i fde f NOT_NEEDED_NOW

EVENTHANDLER C_Selected_Node_Instance(art_symbol panel_schema,

char *value);

This function handles the "item has been selected" event for the Node

Instances textlist on the Component Details Panel.

** Where

** panel_schema is the schema corresponding to the Component Details

* * P ariel

** value is the string that was seiected in the Node Instances textlist

** Nothing need be done on this event.
*/

EVENT_HANDLER C_Selected_Node_Instance (panel_schema, value)

art_symbol panel_schema;

char *value;

[}

#endif NOT NEEDED NOW

/*

EVENT _ HANDLER C_ Selected_ Node_Instance _ Details

(art_symbol panel_schema);

This function handles the "button has been selected" event for the

Node Details button.

Where:

panel_schema is the schema corresponding to the Component Details
Panel

Aug 26 11:50 1991 charles Page 32

** A Node Details Panel is popped up for the node selected in the Node

** Instances textlist. If no item is selected in the Node Instances

** textlist a warning panel is popped up.

*/

The value in the node instances textlist is the node name. After

finding the corresponding node (?) the Node Details Panel is popped up

with populate_new_node_detailspanel()

The component schema is found in the panel_schema's FOR_COMPONENT

slot. To find the corresponding node schema, iterate over the values

in the component schema's CORRESPONDS TO NODES slot, then comparing
the value of these node schema's NAME slot with the value of the Node

Instances textlist.

EVENT HANDLER C Selected_Node_Instance_Details (panel_schema)

art_symbol panel_schema;

[]

*

EVENT_HANDLER C_Selected_Notes (art_symbol panel_schema);

This function handles the "button has been selected" event for the

Notes... button.

Where:

panel_schema is the schema corresponding to the Component Details
Panel

** A Component Notes Panel is popped up for the component's notes.

** The panel's FOR COMPONENT slot contains a pointer to the component

** schema that the-panel is for. A Component Notes Panel is popped up

** with populate_new_component_notes_panel().

*/

EVENT HANDLER CSelected_Notes (panel_schema)

art_s_mbol panel_schema;

[}

/*

** EVENT_HANDLER C_Selected_Close (art_symbol panel_schema);

Aug 26 11:50 1991 charles Page 33

This function handlesthe "button has been selected" event for the
Close button.

Where:

panel_schema is the schema corresponding to the Component Details
Panel

*/

EVENT HANDLER C Selected_Close(panel_schema)

art_symbol panel_schema;

[}

Dismisses the Component Details Panel.

The panel is dismissed with dispose of screen()

#ifdef NOT_NEEDED NOW

/*

EVENT HANDLER GPD_Selected_Graph_Port (art_symbol panel_schema,
- char *value);

This function handles the "item hasbeen selected" event for the Graph

Ports textlist on the Graph Port Details Panel.

Where:

panel_schema is the schema corresponding to the Graph Port Details
Panel

** value is the string that was selected in the Graph Ports textlist

** Nothing need be done on this event.

*/

EVENT HANDLER GPD_Selected_Graph_Port (panel_schema, value)

art_symbol panel_schema;

char *value;

[}

Aug 26 11:50 1991 charles Page 34

#endif NOT_NEEDED_NOW

/*

** EVENT_HANDLER GPD_Selected_Connector_Details (art_symbol panel_schema);
**

** This function handles the "button has been selected" event for the

** Connector Details button.

** Where:

** panel_schema is the schema corresponding to the Graph Port Details
** Panel

** A Node Details Panel is popped up for the node selected in the Graph
** Ports textlist. If no item is selected in the Graph Ports textlist or
** if the selected port is unconnected a warning panel is popped up.

The panel's FOR_GRAPH slot contains a pointer to the graph schema that
the panel is for.

The destination of the selected item is found by using

port_status_connected_to(). If it returns NULL, then the port is

unconnected and a warning panel should be popped up.

After finding the correct connector group, a Connector Details Panel
is popped up with populate_new_connector_details_panel().

COMMENTS:

- How to find the connector group?
Iterate over the values in the graph schema's

HAS_CONNECTOR_GROUPS slot.

*/

EVENT HANDLER GPD Sel_ted_Connector_Details (panelschema)

art_symbol panel_schema;
[]

*

** EVENT_HANDLER GPD_Selected_Component_Details (art_symbol panel_schema);

** This function handles the "button has been selected" event for the

** Component Details button.
**

** Where:

** panel_schema is the schema corresponding to the Graph Port Details

Aug 26 11:50 1991 charles Page 35

,/

** Panel

** A Component Details Panel is popped up for the graph's component.
*W

The panel's FOR GRAPH slot contains a pointer to the graph schema that

the panel is for. The Component Details Panel is popped up with

populate_new_component_details_panel()

EVENT HANDLER GPD_Selected_Component_Details (panel_schema)

art_symbol panel_schema;

{}

/*

W*

EVENT_HANDLER GPD_Selected_Close (art_symbol panel_schema);

This function handles the "bUttonha6_eh selected" event for the

Close button.

Where:

panel_schema is the schema corresponding to the Component Details
Panel

** Dismisses the Graph Port Details Pane!.

** The panel is dismissed with dispose of screen()

./

EVENT HANDLER GPD Selected_Close (panel_schema)

art_s_nbol panei_schema;

[}

/*

** EVENT_HANLDER CN_Close (art_symbol panel_schema);

Aug 26 11:50 1991 charles Page 36

** This function handlesthe "button has been selected" event for the
** Close button. -

** Where:

** panel_schema is the schema corresponding to the Component Notes Panel

,/

Dismisses the Component Notes Panel.

The panel is dismissed with dispose of screen()

EVENT HANDLER CN_Close (panel_schema)

art_symbol panel_schema;

[]

**

** Node Notes Panel

*/

#ifdef NOT NEEDED NOW

EVENT_HANDLER NN_Changed_Node_Notes (art_symbol panel_schema,
char **value,

int numlines);

**

This function handles the "pageedit field has been changed and left"

event for the Node Notes field.

Where:

panel_schema is the schema corresponding to the Node Notes Panel

value is the string that was selected in the Graph Ports textlist

** Nothing need be done on this event.

*/

EVENT_HANDLER NN_Changed_Node_Notes (panel_schema, value, numlines)

art_symbol panel_schema;

char **value;

int numlines;

[}

Aug 26 11:50 1991 charles Page 37

#endif NOT_NEEDED_NOW

/,
** EVENT_HANDLER NN_Selected_Ok (art_symbol panel_schema);

** This function handles the "button has been selected" event for the

** Ok button.

** Where:

** panel_schema is the schema corresponding to the Node Notes Panel

Associates the current contents of the Node_Notes pageedit field with

the Node and dismisses the Node Notes panel.

*W

COMMENTS :

- A method needs to be made to associate node notes with a

node.

** The panel's CURRENTLY DISPLAYED NODE slot contains a pointer to the
** node that the panel is for. The node's NOTES slot contains the notes.

*/

EVENT_HANDLER NN_Selected_Ok (panel_schema)

art_symbol panel_schema;

[]

/*

EVENT_HANDLER NN_Selected_Cancel (art_symbol panel_schema);

This function handles the "button has been selected" event for the

Cancel button.

Where:

panel_schema is the schema corresponding to the Node Notes Panel

*/

Dismisses the Node Notes Panel.

The panel is dismissed with dispose of screen()

Aug 26 11:50 1991 charles Page 38

EVENT HANDLER NN Selected_Cancel (panel_schema)

art_symbol panel_schema;

[}

#ifdef NOT_NEEDED_NOW

/* [

EVENT_HANDLER SCV_Selected_Defined_Value (art_symbol panel_scheMa,

char *value);

This function handles the "item has been selected" event for the

Defined Values textlist on the Select Constant Value Panel.

Where:

panel_schema is the schema corresponding to the Select
Constant Value Panel

value is the string that was selected in the Defined Values textlist

** Nothing need be done on this event.

*/

EVENT HANDLER SCV Selected_Defined_Value (panel_schema, value)

art_symbol panel_schema;
char *value;

[]

#endif NOT NEEDED NOW

*

** EVENT_HANDLER SCV_Selected_Ok (art_symbol panel_schema);

** This function handles the "button has been selected" event for the

** Ok button.
**

** Where:

** panel_schema is the schema corresponding to the Select
** Constant Value Panel

Aug 2611:50 1991 charles Page 39

** If an item is selected in the Defined Values field, then populate the

** Constant Value field on the parental Constant To Node Connector

** Details Panel. Dismiss the Select Constant Value Panel.
**

** Otherwise, popup a warning panel.
**

** COMMENT:
*W

** * Mechanism needed to get at parental Constant To Node
** Connector Details Panel.

W**WW*W*

** The panel's HAS PARENT PANEL slot contains a pointer to the Constant

** To Node panel schema teat this panel emanated from. The currently
** selected value in the Constant Value textlist should be populated to

** the parent panel's Constant Value Field.

** Then this panel is dismissed with dispose of screen()

,/

EVENT HANDLER SCV Selected_Ok (panel_schema)

art_symbol panel_schema;

[}

*

EVENT_HANDLER SCV_SelectedCancel (art_symbol panel_schema);

This function handles the "button has been selected" event for the

Cancel button.

Where:

** panel_schwa is the schema corresponding to the Select
** Constant Value Panel

** Dismisses the Select Constant Value Panel.

** The panel is dismissed with dispose of screen()

*/

EVENT HANDLER SCV Selected_Cancel (panel_schema)

art_symbol panel_s--chema;

[}

/,

** file: connector_rep.c

Aug 26 11:50 1991 charles Page 40

*/

Title: Implementation of functions for connector rep structures, etc.

#include "connector_rep. h"
#include "artsymbols. h"
#include "defs. h"

#include "string_utils. h"

char *strdup(/* char * */);

/* forward declarations of useful internal connector_rep functions */

void construct_initial_port_reps (/* art_symbol panel_schema,
art_symbol node,
boolean input */);

void enlarge_connector_reps (/* art_symbol panel_schema */);

art_symbol make_new_connector_schema (/* connector_rep *conn_rep */);

#ifdef EXTRA FUNCTIONS H

void find new connector source and destination

(7* art_symbol panel_schema,

char *connector menu_item,
art_symbol *source_port

art_symbol *destination_port);

art_symbol find_data_type (/* char *type_name */);

art_symbol find_constant_schema (/* char *type_name,
char *constant_value */);

art_symbol find_port (/* a_symbol graph,
char *port_name,

boolean input */);

#endif EXTRA FUNCTIONS H
m

/*

** art_symbol find_data_type (char *type_name);

** This function searches for the data type schema for the passed type

4 "

Aug 26 11:50 1991 charles Page 41

** name.

** Where

** type_name is the data type to be searched for.

** the return value is the data-type schema if found, NULL
** otherwise.

** Iterate over all instances of DATA_TYPE, searching for one that has
** its NAME OF DATA TYPE slot the same as the passed type name.

./

art_symbol find_data_type (type_name)

char *type_name;

[}

/*

art_symbol find_constantschema (char *type_name,
char *constant value);

This function searches for a constant value schema.

found, then _ is returned.

** Where:

** type.__name is the. string for the data type name

** constant value is the string of the value of the constant

** the return value is the constant schema if found, NULL
** otherwise.

If none is

First find the data_type schema with find data_type(). Then iterate

over all instances of CONSTANT, searching for one tha£ has it's

• HAS DATA TYPE slot pointing to the found data type schema and it's

VALUE slot comparing to the passed value.

,/

art_symbol find_constant_schema (type_name, constant_value)

char *type_name;
char *constant_value;

[}

_ug 26 11:50 1991 charles Page 42

/*

art_symbol find_port (art_symbol esl_object,

char *port_name,

boolean input);

This function searches for a port with a particular name and

direction on a passed esl_object

Where:

esl_object is the graph schema or node schema who's ports are
to be searched

port_name is the name of the graph port to be searched for

input is TRUE if the graph's input ports are to be searched,

FALSE if the graph's output ports are to be searched.

the return value is the graph port schema if found, NULL
otherwise.

** The esl_object's input ports are found in the schema's

** HAS_INPUT_PORTS. The output ports are found in the schema's
** HAS OUTPUT PORTS. Depending on the value of input, one of these lists

** is searched for a port that has its LABEL slot comparing with the

** passed port name.

*/

art_symbol findport (esl_object, port_name, input)

art_symbol esl_object;

char *port_name;

boolean input;

[}

/*

** void find new connector source and destination

** (art_symbol panel_schema,

** char *connector menu_item,

** art_symbol *source_port,

** art_symbol *destinationport);

** This function finds the source port and destination port schemas for a

** connection specified by its connector menu item. If the ports don't

** exist (in the case of graph port or constant connections), then they
** will be created.

Where:

Aug 26 11:50 1991 charles Page 43

W*

*W

*W

panel_schema is the schema corresponding to the Connector
Details Panel

connector_menu_item is the menu item for the connection conecerned.

source_port, destination_port are pointers to art_symbols which
this function will set to point to the source and

destination objects (either port or constant schemas)

First find out the type of CD panel with determine CD panel_type().

Then extract the source and destination parts from the connector menu

item with extract_connector_source() and

extract_connector_destination().

Each case is handled separately:

W*

W*

node-to and To-Node:

Extract the port-name part from the source or destination part with

extract_port_name(). The panel's connector group is found in the

panel schema's CURRENTLY DISPLAYED_CONNECTOR_GROUP slot. The

SOURCE_NODE and DESTINATiON_NODE slots of the connector group specify
the source and destination nodes of the connector group.

Use the function find_port() to find either the output port on the

source node, or the input port on the destination node.

** Constant-to:

**

The entire source part is the constant value. Extract the type from

the destination part with extract_type_name(). Use the function

find constant schema() to find the constant schema if one exists. If

none-exists, Then create a new schema:

(defschema CONSTANT-<xx>

(instance-of constant)

(has-data-type <data-type>)

(value <value>))

Graph-port-to and to-graph-port:

Extract the port-name part with extractport_name().

For graph-port-to panels, search for a graph output port and for

to-graph-port panels, search for a graph input port by using the

function find_port(). If none is found, extract the data type of the

Aug 26 11:50 1991 charles Page 44

*/

"other field" (source or destination) of the passed connector menu

item and create a graph-port schema:

(defschema GRAPH-PORT-FOR-<graph-schema-name>-<xx>

(LABEL <label>)

(notes "")

(direction <dir>)

(port-data-type <data-type-schema>))

The caller will fill in the notes with the connector notes.

void find new connector source and destination

(pane__schema, _onnector menu_item,

source_port, destination_port)

art_symbol panel_schema;

char *connector menu_item;

art_symbol *source_port, *destination_port;

[}

/*

art_symbol make_new_connector_schema (connector_rep *conn_rep) ;

This function returns a new connector schema for the passed connector

rep structure.

Where

conn_rep is a pointer to the connector rep structure that the
new connector is for. This should have its connector

membor NULL.

the return value is the new connector schema.

** The big deal here is to make up a new name.

** connector-<from-port>-to-<to-port>-<x>

** "Where <x> is generated by gentmp().

New names are of the format:

,/

#define CONNECTOR NAME FORMAT

#define CONNECTOR NAME FIXED LEN

"CONNECTOR-%s-TO-%s-"

15

art_symbol make_new_connector_schema (conn_rep)

connector_rep *conn_rep;

[
char *connector_menu_item;

Aug 26 11:50 1991 charles Page 45

char *source, *destination;

char *source_port_name, *destination_port_name;

char *connector_name;

int connector_name_len;

art_symbol new_connector_object;

connector_menu_item = conn_rep->menu_item;

source = extract connector source (connector_menu_item);
destination - extract connector destination (connector_menu_item);

-- m

source_port_name = extract_port_name (source);
destination_port_name = extract_port_name (destination);

connector name len m CONNECTOR_N_FIXED_LEN +
strlen_source_port_name) + strlen(destinationportname);

connector name - (char *)

get_memory((connector_name_len + i) * sizeof(char));

sprintf(connector_name, CONNECTOR NAME FORMAT,
source_port_name, destination_port_name);

new_connector_object - a_gentemp(connector_name);

a_schemac(new_connector_object, IL);
a_put_schema_value(new_connector_object, INSTANCE_OF,

CONNECTOR, IL);

rtn_memory(source);

rtn_memory(source_port_name);
rtn_memory(destination);
rtn_memory(destination_port_name);

rtn_memory(connector_name);

return new_connector_object;

/*

** boolean visible_connector_p (connector_rep *conn_rep);

** Tells if the passed connector rep should is real.

** Where

** conn_rep is a pointer to the connector_rep structure

./

boolean visible_connector_p (conn_rep)

Connectors are real if they have a schema and are associated, or

always if they don't have a schema.

Aug 26 11:50 1991 charles Page 46

connector_rep *conn_rep;
[

if (conn_rep)_
if (conn_rep->connector)
[

}
else

return 0L;

if (conn_rep->associated)
return IL;

return IL;

/*

*w

connector_rep *search_for_connector_rep (art_symbol panel_schema,
char *connector_menu_item);

This function returns a pointer to the connector rep associated with

the passed connector_menu_item.

Where:

panel_schema is the schema corresponding to the Connector
Details Panel

connector menu item is the connector menu item string. The
connector menu item string format is discussed in

make_connector_menu_item_string()

the return value is a pointer to the connector rep structure

that corresponds to connector_menu_item.

./

An pointer to an array of pointers to connector_rep structures is
found in the CONNECTOR REPS slot of the passed panel schema and the

size of that array is stored in the CONNECTOR_REPS_SIZE slot.

For each of the connector_rep structures, the strings in the

connector_rep's menu_itemmember are compared with connector_menu_item
until a match is found.

If none is found, then NULL is returned.

connector_rep *searchfor_connector_rep (panel_schema, connector_menu_item)

art_symbol panel_schema;
char *connector_menu_it_;
[

connector_rep ***connector_reps;
long connector_reps_size, i;

connector_reps - (connector_rep ***) a_external_pointer_value

Aug 26 11:50 1991 charles Page 47

(a_get_schema_value(panel_schema, CONNECTOR_REPS));

connector reps size = a_integer_value

(a_get_schema_value(panel_schema, CONNECTOR_REPS_SIZE));

for (i = 0; i < connector_reps_size; i++)

if ((*connector_reps)[i] &&

!strcmp((*connector_reps)[i]->menu_item,

connector_menu_item))

return (*connector_reps)[i];

return NULL;

*

connector_rep *search_for_connector_rep_by_source

(art_symbol panel_schema, char *source);

connector_rep *search_for_connectorrep_by_destination

(art_symbol panel_schema, char *destination);

These functions search through a Connector Details Panel's

connector_rep structures for one that has the passed source or
destination.

Where:

panel_schema is the schema corresponding to the Connector
Details Panel

source, destination is the value for the <source> or

<destination> part of a connector menu item string.

The connector menu item string format is discussed in

make_connector_menu_item_string()

the return value is a pointer to the connector rep structure
for the connector that has the passed source or destination

A pointer to an array of pointers to connector_rep structures is found

in the CONNECTOR REPS slot of the passed panel_schema and the size of

that array is stored in the CONNECTOR_REPS_SIZE slot.

The strings are extracted with extract_connector_source() or

extract_connector_destination(). The strings returned by these
functions is freed here.

,/

connector_rep *search_for_connector_rep_by_source (panel_schema, source)

art_symbol panel_schema;

char *source;

[

Aug 26 11:50 1991 charles Page 48

connector_rep ***connector_reps;
char *connector_rep_source;
long connector_reps_size, is
boolean found;

connector_reps = (connector_rep ***) a_external-pointer_value
(a_get_schema_value(panel_schema, CONNECTOR_REPS));

connector_reps_size = a_integer_value

(aget_schema_value(panel_schema, CONNECTOR_REPS_SIZE));

for (i = 0; i < connector_reps_size; i++)
[

if ((*connector_reps)[i])

connector_rep_source = extract_connector_source
((*connector_reps)[i]->menu_item);

found - !strcmp(connector_rep_source, source);

rtn_memory(connector_rep_source);
if (found)

return (*connector_reps)[i];

return NULL;

connector_rep *search_for_connector_rep_by_destination
(panel_schema, destination)

art_symbol panel_schema;
char *destination;

[
connector_rep ***connector reps;
char *connector_rep_destination;

long connector_reps_size, is
boolean found;

connector reps s (connector rep ***) a_external_pointer_value
(a_get_schema_value_panel_schema, CONNECTOR_REPS));

connector_reps_size - a_integer_value
(a_get_schema_value(panel_schema, CONNECTOR_REPS_SIZE));

for (i - 0; i < connector_reps_size; i++)
[

if ((*connector_reps)[i])

connector_rep_destination =
extract connector destination

-((*connector_reps)[i]->menu_item);

found - !strcmp(connector_rep_destination, destination);

rtn_memory(connector_rep_destination);

if (found)
return (*connector_reps)[i];

Aug 26 11:50 1991 charles Page 49

return NULL;

*

** void re_associate_connector (connector_rep *conn_rep, char *notes);

** This function re-associates a connector that has become unassociated

** (ie. undefined).

** Where:

** conn_rep is a pointer to a connector_rep structure

** notes is the new value for the connector's notes

The value of the passed connector_rep structure's associated member is

changed from FALSE to TRUE, and a copy of the passed notes are put
into the notes member. Any previous value of the notes field is

freed.

It is an internal error for the associated field to be TRUE upon

entry. The best thing to do in this case is to do nothing.

COMMENTS:

- The panel_schema can be used to get the notes instead of their

beihg passed to this function.

./

void re associate connector (conn_rep, notes)

connector_rep *conn_rep;

char *notes;

[
if (conn_rep)

[
conn_rep->associated - IL;

if (conn_rep->notes)

rtn_memory (conn_rep->notes);

conn_rep->notes - strdup(notes);

/*

void disassociate_connector_rep (art_symbol panel_schema,

connector_rep *conn_rep);

This function disassociates a connector (ie: undefines it.).

Where:

Aug 26 11:50 1991 charles Page 50

*W

panel_schema is the schema corresponding to the Connector
Details Panel

conn_rep is a pointer to a connector_rep structure

W*

If the connector member of conn_rep* is non-NI/LL, then the connector

has previously existed. The assoicated member is set to FALSE.

If the connector member of conn_rep* is NULL, then the connector

object has never been made. The panel schema's CONNECTOR_REPS slot
contains a pointer to an array of pointers to connector_rep structures
and the CONNECTOR REPS SIZE slot contains the size of that array.

This array is searched for a pointer that corresponds to conn_rep. If
the notes member of conn_rep* is non-NIff_, then the string it points
to is freed. The memory used by the conn_rep* is also freed. The

pointer to conn_rep in the CONNECTOR_REPS array is made NULL.

,/

void disassociate_connector_rep (panel_schema, conn_rep)

art_symbol panel_schema;
connector_rep *conn_rep;
[

connector_rep ***connector_reps;
long connector_reps_size, i;

if (!conn_rep)
return;

if (conn_rep->connector)
conn_rep->associated z 0L;

else

[
connector_reps _ (connector_rep ***) a_external_pointer_value

(a_get_schema_value(panel_schema, CONNECTOR_REPS));

connector_reps_size = a_integer_value
(a_get_schema_value(panel_schema,

CONNECTOR_REPS_SIZE));

for (i - 0; i < connector_reps_size; i++)
if ((*connector_reps)[i] &&

(*connector_reps) [i] _- conn_rep)
[

(*connector_reps) [i] = NULL;

if (conn_rep->notes)
rtn_memory(conn_rep->notes);

rtn_memory(conn_rep);

break;

Aug 26 11:50 1991 charles Page 51

*

** void construc%_initial_reps (art_symbol panel_schema);

** This function constructs the connector rep structures and port.__rep
** structures for the passed Connector Details panel schema.

** Where:

** panel_schema is the schema corresponding to the Connector
** Details Panel

*W

Unless the panel is a Constant To panel, the input port reps are

constructed using construct_initial_port_reps(). The output port reps
are always constructed using the same function.

The connector_reps are constructed using
construct_initial_connector_reps()

*/

void construct_initial_reps (panel_schema)

art_symbol panel_schema;
[]

W

*W

void construct_initial_port_reps (art_symbol panel_schema,

art_symbol node,
boolean input)

This function creates the support port_rep structures for Connector
Details Panels. Only one set (input or output) is made with one call
to this funciton. If the panel is a Node To Node Connector Details
panel this function will have to be called twice.

Where:

panel_schema is the schema corresponding to the Connector
Details Panel.

node is the node schema that the ports are attached to.

input is TRUE if the node's input ports are to be used, FALSE
if the node's output ports are to be used.

Once this is done, the panel-schema may be fed into
search_for_port_rep()

Aug 26 11:50 1991 charles Page 52

WW

*W

*/

The node's input ports are found in the node schema's HAS INPUT PORTS

slot; the output ports are found in the node schema's HASZOUTPUT_PORTS

slot. The a pointer to an array of pointers to port_rep structures

for input ports is put in the panel-schema's INPUT_PORT_REPS slot, and

for output ports it is put in the panel-schema's OUTPUT_PORT_REPS
slot.

Memory is allocated for the an array of pointers to port reps that is

one larger than the number of ports, and also for a port_rep structure

for each port. This memory should be allocated all at once so that it
can be freed all at once.

The array is initialized with a pointer to each successive port_rep

structure, terminating with a NULL pointer.

The port_rep structures are given values by iterating over the ports

and:

filling the port member with a pointer to the port schema

filling the menu_item member with a port-type menu item

created by calling create_port_type_menu_item() with the value of the

port's NAME slot and either the value of the port's PORT_DATA_TYPE (if

it is a string) or use that value to find the data-type schema and use
it's NAME OF DATA TYPE slot.

void construct_initial_port_reps (panel_schema, node, input)

art_symbol panel_schema;

art_symbol node;

boolean input;

[}

/*

*W

void construct_initial_connector_reps (art_symbol panel_schema,

art_symbol connector_group);

This function creates the support connector_rep structures for

Connector Details Panels. The necessary port_rep structures should be

made first with construct_initial_port_reps()

Where:

panel_schema is the schema corresponding to the Connector
Details Panel.

connector_group is the connector-group schema that the

Connector Details Panel displays

** Any previous values in the CONNECTOR_REPS and CONNECTOR_REPS_SIZE

Aug 26 11:50 1991 charles Page 53

*/

slots are reused. If none exists or if the array needs to be resized,

the function enlarge_connector_reps() is used.

The connector group that the panel is for is found in the

CURRENTLY_DISPLAYED_CONNECTOR GROUP slot. The HAS CONNECTORS slot in
the connector-group schema con-tains the list of connector objects.

This list is iterated over and the connector_rep structures are filled

in by add_new_connector_rep(). The connector menu items are

constructed with make_connector_menu_item().

The connector schema's SOURCE PORT slot contains a pointer to the

source port schema of the con_ector and the DESTINATION_PORT slot

contains a pointer to the destination port schema.

If the panel is a Node To panel or Graph Port To panel then the source

argument to make connector_menu_item() is found by calling

search_for_port_rep_by_port() with the port schema and using it's
menu item member. If the panel is a To Node or To Graph Port panel

then--the destination argument is found similarily.

On Constant To panels, one must use the constant value for the source

argument to make_connector_menu_item(). The constant schema is

pointed to by the connector schema's SOURCE_PORT slot, and the value
is stored in its VALUE slot.

static art_object connector_details_panel;

static art_object this_connector_group;

static boolean constant_source;

boolean construct_initial_connector_rep (connector)

art_object connector;

[
art_symbol source, destination;

char *source_substring, *destination_substring;

char *connector_menu_item;

char *notes;

source - a_get_schema_value(connector, SOURCE_PORT);

destination - a_get_schema_value(connector, DESTINATION_PORT);

if (a_slot_null(connector, NOTES))
notes - NULL;

else

notes - a_string_value(a_get_schema_value(connector, NOTES));

if (constant_source)

[
if (a_stringp(source))

source_substring - a_string_value(source);
else

source_substring - a_string_value

(a_get_schema_value(source, VALUE));

}
else

Aug 26 11:50 1991 charles Page 54

source_substring m make_port_type_menu_item (source);

destination_substring = make_port_type_menu_item (destination);

connector_menu_item = make_connector_menu_item(source_substring,

destination_substring);

add_new_connector_rep (connector_details_panel,

connector_menu_item,

connector, notes);

if (!constant_source)

rtn_memory (source_substring);

rtn_memory (destination_substring);

return IL;

void construct_initial_connector_reps (panel_schema, connector_group)

art_symbol panel_schema;

art_symbol connector_group;

[
connector_details_panel _ panel_schema;

this_connector_group - connector_group;

constant source-

a_eq(a_get_schema_value(connector_group, SOURCE_NODE),

CONSTANT_VALUE);

a forschema_values(connector_group, HAS_CONNECTORS,

construct_initial_connector_rep, NULL);

/*

connector_rep *add_new_connector_rep (art_symbol panel_schema,

char *connector_menu_item,

art_symbol connector,

char *notes)

This function makes a new connector_rep structure for a new

connection. It returns a pointer to the new connector_rep structure.

Where:

panel_schema is the schema corresponding to the Connector
Details Panel

connector menu item is a connector menu item string

connector is the corresponding connector schema

Aug 26 11:50 1991 charles Page 55

WW

notes is the notes for the connector

the return value is a pointer to the connector rep structure
made.

If connector is NULL, then the connector rep is for a newly defined
connector. This is the case when this function is called from
CD_Select_Connect().

** existing connector. This is the case when it is called by
** construct_initial_reps().

If connector is non-NULL, then the connector rep is for an already

W*

*W

W*

*W

W*

The array of connector_rep pointers is stored in the panel_schema's
CONNECTOR REPS slot and the current size of that array is stored in
the CONNECTOR_REPS_SIZE slot. This array is scanned for a NULL

pointer. If no NULL pointer is found, then the array is enlarged as
follows:

i. Allocate memory a larger array of pointers. Change the
CONNECTOR_REPS_SIZE slot. The array is size increased by some

constant value (ed: specify constant value later).

2. Copy the old array of pointers.

3. Free up the old array of pointers.

A new connector_rep structure is allocated and fields are filled in as
follows:

i. The menu item and notes members are set to the passed
connector_menu__tem and a copy of notes.

2. The connector member is given the passed connector value.
The associated member is set to TRUE.

If this function fails (only possible if memory cannot be allocated),
it will return NT/i_.

COMMENTS:

- Failure is so unexpected, that maybe it should raise a warning.

- May want to break up enlarge array functionality into another
function.

** Regarding enlarging the array of pointers to connector_rep structures:

Aug 26 11:50 1991 charles Page 56

./

If there is no value on the panel schema's CONNECTOR_REPS

slot, then a new array of pointers to connector_reps is a allocated

with size MINIMU_CONNECTOR_ _REPS_SIZE- The array is initialized with

NULL pointers. The panel schema's CONNECTOR REPS slot and

CONNECTOR_REPS_SIZE slots are filled in with a pointer to this array
and the size of the array respectively.

If the panel already has connector_reps, then a new array is

allocated with size equal to the previous value in the

CONNECTOR_REPS_SIZE slot plus the constant

ENLARGEMENT_CONNECTOR_REPS_SIZE. The old array of pointers is copied

into the new array and then freed. The CONNECTOR REPS and

CONNECTOR_REPS_SIZE slots are also updated.

connector_rep *add_new_connector_rep (panel_schema,

connector_menu_item, connector, notes)

art_symbol panel_schema;

char *connector menu_item;

art_symbol connector;

char *notes;

[
connector_rep *new_connector_rep;

connector_rep ***old_connector_reps, ***new_connector_reps;

long connector_reps_size, new_connector_reps_size;

long old_connector_reps_size;

int i;

new_connector_rep - (connector_rep *)

(get_memory(l * sizeof(connector_rep)));

new_connector_rep->menu_item = connector_menu_item;

new_connector_rep->connector s connector;

new_connector_rep->associated - (connector ? IL : 0L);

if (notes)

new_connector_rep->notes = strdup(notes);
else

new_connector_rep->notes - NULL;

if (a_slot_null(panel_schema, CONNECTOR_REPS))
[

new_connector_reps = (connector_rep ***)

get_memory(l * sizeof(connector_rep **));

*new_connector_reps - (connector_rep **)

get_memory(MINIMUM_CONNECTOR REPS_SIZE

* sizeof(connector_rep *))7

a_modify_schema_value(panel_schema, CONNECTOR_REPS,

a_art_external_pointer(new_connector_reps),

IL);

a_modify_schema_value(panel_schema, CONNECTOR_REPS_SIZE,

a_art_integer(MINIMUM_CONNECTOR_REPS_SIZE),

IL);

Aug 26 11:50 1991 charles Page 57

(*new_connector_reps)[0] = new_connector_rep;

for (i _ i; i < MINIMUM_CONNECTOR_REPS_SIZE; i++)
(*new_connector_reps)[i] = NULL;

return;

old_connector_reps - (connector_rep ***) a_external_pointer_value

(a_get_schema_value(panel_schema, CONNECTOR_REPS));
connector_reps_size = a_integer_value

(a_get_schema_value(panel_schema, CONNECTOR_REPS_SIZE));

for (i = 0; i < connector_reps_size; i++)

if (!(*old_connector_reps)[i])
[

(*old_connector_reps)[i] = new_connector_rep;
return;

}

/* otherwise must enlarge array.. */

new_connector_reps - (connector_rep ***)
get_memory(l * sizeof(connector_rep **));

new_connector_reps_size m
connector_reps_size + ENLARGEMENT_CONNECTOR_REPS_SIZE;

a_modify_schema_value(panel_schema, CONNECTOR REPS,

a_external_pointer_value(new_connector_reps));
a_modify_schema_value(panel_schema, CONNECTOR_REPS_SIZE,

a_art_integer(MINIMUM_CONNECTOR_REPS_SIZE));

*new_connector_reps - (connector_rep **)
get_memory(new_connector_reps_size

* sizeof(connector_rep *));

for (i = 0; i < connector_reps_size; i++)

(*new_connector_reps)[i] - (*old_connector_reps)[i];

for (i m connector_reps_size;

i < new_connector_reps_size;
i++)

(*new_connector_reps)[i] - NULL;

(*new_connector_reps)[connector_reps_size] - new_connector_rep;

rtn_memory(*old_connector_reps);
rtn_memory(old_connector_reps);

/*

Aug 26 11:50 1991 charles Page 58

** void free_up_reps (art_symbol panel_schema);

** This function frees up memory used by the panel_scho2na's connector_rep
** and port_rep structures, prior to dismissing the panel.

** Where:

** panel_schema is the schema corresponding to the Connector
** Details Panel

If the panel is not a Constant To panel, a pointer to an array of
pointers to port_reps are found in the panel schema's INPUT_PORT_REPS
slot. This memory is freed here. All panlels have an

OUTPUT_PORT_REPS slot which points to memory which must be similarily
freed.

This function iterates over the array of pointers to connector_rep
structures found in the panel_schema's CONNECTOR_REPS slots. The size

of the array is stored in the CONNECTOR_REPS_SIZE slot.

All connector_rep structs pointed to by the CONNECTOR_REPS array have
their menu item and notes member strings freed. Then the memory used

by the connector_rep structure is then freed and the pointers in the

array are set to NULL.

,/

void free_up_reps (panel_schema)
art_symbol panel_schema;
[

connector_rep ***connector_reps, *this_connector_rep;
long connector_reps_size;
long i;

connector_reps - (connector_rep ***) a_external_pointer_value

(a_get_schema_value(panel_schema, CONNECTOR_REPS));
connector_repssize - a_integer_value

(a_get_schema_value(panel_schema, CONNECTOR_REPS_SIZE));

for (i - 0; i < connector_reps_size; i++)
[

this_connector_rep - (*connector_reps)[i];

if (this_connector_rep)
[

rtn_memory(this_connector_rep->menu_item);
if (this_connector_rep->notes)

rtn_memory(this_connector_rep->notes);

rtn_memory(this_connector_rep);

(*connector_reps)[i] _ NULL;

Aug 26 11:50 1991 charles Page 59

*

*W

void create_and_destroy_changed_connectors (art_symbol panel_schema);

This function creates a connector schema for each newly defined

connector, modifies connectors with changed definitions, and destroys

newly undefined connectors.

Where:

panel_schema is the schema corresponding to the Connector
Details Panel

It iterates over the array of pointers to connector_reps found in the

CONECTOR REPS slot of the passed panel_schema. The size of that array

is found-in the CONNECTOR_REPS_SIZE slot.

For each connector rep structure pointed to:

- If the value of connector member is non-NULL and associated

is FALSE, then the corresponding connector schema must be destroyed.

This requires that:

i. The connector group schema no longer reference it.

2. The memory used by the menu item and notes fields

is freed. The memory used by the connecto__rep is also freed. The

pointer to the connector rep structure is set to NULL.

3. The connector schema be deleted

- If the value of the connector member is non-NULL and

associated is TRUE, then the corresponding connector schema may need

to have their NOTES slots changed. The notes member contains current

notes.

- If the value of connector member is NULL and associated is

TRUE, then a new connector object must be created. This requires

'that:

i, A new connector schema is made with NOTES and

BELONGS TO CONNECTOR_GROUP slots filled in.

2. The connector group must reference this new

connector object in its HAS_CONNECTORS slot.

3. The connector field in the connector_rep must point

the new connector object.

Aug 26 11:50 1991 charles Page 60

MAS: Put in something for the ports...

,/

void create_and_destroy_changed_connectors (panel_schema)

art_symbol panel_schema;

[
connector_rep ***connector_reps, *this_connector_rep;

long connector_reps_size, i;

art_symbol this_connector, connector_group;

connector_reps = (connector_rep ***) aexternal_pointer_value

(aget_schema_value(panel_schema, CONNECTOR_REPS));

connector_reps_size - a_integer_value

(a_get_schema_value(panel_schema, CONNECTOR_REPS_SIZE));

for (i = 0; i < connector_reps_size; i++)

[
this_connector_rep = (*connector_reps)[i];

if (!this_connector_rep)
continue;

this_connector _ this_connector_rep->connector;

if (this_connector && !this_connector_rep->associated)

[
/* destroy an old connector object... */

/* retract the BELONGS TO_CONNECTOR_GROUP */

connector_group - a_get_schema_value

(this_connector,

BELONGS TO CONNECTOR_GROUP);

a_retract_schema_value(connector_group,

HAS_CONNECTORS,

this_connector, IL);

/* Return memory */

rtn_memory(this_connector_rep->menu_item);

if (this_connector_rep->notes)

rtn_memory(this_connector_rep->notes);

rtn_memory(this_connector_rep);

(*connector_reps)[i] - NULL;

/* delete the schema */

a_schemad(this_connector);

}
else if (this_connector && this connector_rep->associated)

[
/* update existing connector object... */

if (this_connector_rep->notes)

a_modify_schema_value

(this_connector,

Aug 26 11:50 1991 charles Page 61

}
else

[

else

NOTES,

a_art_string(this_connector_rep->notes),
IL);

a_modify_schema_value
(this_connector,

NOTES, a_art string(""), IL);

/* create new connector object... */
this connector

make_new_connector_schema(this_connectorrep);

connector_group = a_get_schema_value

(panel_schema,
CURRENTLY_DISPLAYED_CONNECTOR_GROUP);

a_modify_schemavalue(this_connector,
BELONGS_TO_CONNECTOR_GROUP,
connector_group, IL);

a_put_schema_value(connector_group,
HAS CONNECTORS,

this_connector, IL);

if (this_connector_rep->notes)
a_modify_schema_value

(this_connector,
NOTES,

a_art_string(this_connector_rep->notes),
IL);

else

a_modify_schema_value
(this_connector,
NOTES, "", IL);

this_connector_rep->connector - this_connector;

/*

**

port_rep *search_for_port_rep_by_menu_item (art_symbol panel_schema,
char *port_type_menu_item,
boolean input);

port_rep *search_for_port_rep_by_port (art_symbol panel_schema,
art_symbol port,

boolean input);

These functions searche for the port rep structure that corresponds to

a port-type menu item or port schema? given the port direction.

Aug 26 11:50 1991 charles Page 62

*W

Where:

panel_schema is the schema corresponding to the Connector
Details Panel

port_type_menu_item is the port-type menu item to be searched

for. port-type menu item format is discussed in

construct_port_type_menu_item()

port is the port schema

input is TRUE if the port is an input port, FALSE otherwise

*W

If input is TRUE, the panel schema's INPUT_PORT_REPS slot is used for

the search. Otherwise, the panel schema's OUTPUT_PORT_REPS slot is

used.

The panel schema's [INPUTIOUTPUT]_PORT REPS slot contains a pointer to

a NULL terminated array of pointers to port_rep structures.

search_for_port_rep_by_menu_item() searches these port_rep structures
for one that has its menu_itemmember that strcmp() with the passed

port-type menu item.

search_for_port_rep_by_port compares the port_rep's port member with

the passed port (ed: with a_eq or - ?).

COMMENTS:

- It is an internal error to for the panel schema not to have the

proper slot, or for there to be no value in this slot. Since it is

probably caused by a logic flaw we will want fixed, a warning message

should be generated.

./

port_rep *search_for_port_rep_by_menu_item (panel_schema,
port_type_menu_item, input)

art_symbol panel_schema;

char *port_type_menu_item;

boolean input;

[}

port_rep *search_for_port_rep_by_port (panel_schema, port, inPut)

art_symbol panel_schema;

art_symbol port;

boolean input;

[]

/*

Aug 26 11:50 1991 charles Page 63

* /

file: extra functions.c

Function bodies for extra support stuff for ESL.

grouped here for now. That'll be changed soon.

All functions are

#include "extra functions.h"

/* string_utils.c */

*

char *make_connector_menu_item (char *source, char *destination);

This function makes a connector menu item for the passed source and
destination.

Where:

source, destination are the strings to be the <source> and
<destination> part of the connector menu item

the return value is the generated connector menu item string

W*

*W

,/

This function allocates memory for the returned string which must be
freed later.

The generated connector menu item will look like:

"<source> to <destination>"

The <source> and <destination> fields will have some minimumconstant

width (ed: specificy constant name later). The " to " may need more
padding spaces to align the view properly.

COMMENTS:

- Possibly the source and destination arguments could be art_symbols.

char *make_connector menu item (source, destination)
char *source, *destination;
[}

/*

char *extract_connector_source (char *connector menu_item);
char *extract_connector_destination (char *conne-ctor_menu_item);

Aug 26 11:50 1991 charles Page 64

** These functions take a connector menu item and extracts either the

** source or the destination part.

** Where:

** connector_menu_item is the connector menu item string

** the return value is the <source> or <destination> extraction

** from the connector menu item string.

W*

The connector menu item string format is discussed in

make_connector_menu_item(). These functions return either the

<source> or <destination> part with no trailing spaces.

The source string is suitable to be populated to the Sources textlist

on Node To panels, the Destinations textlist on To Node panels and

Constant Value field on Constant To panels. It must have the type

information stripped off with extract_port_name() for the the Graph

Port Name field on Graph Port To and To Graph Port panels.

These functions allocate memory for the returned string which must be
freed later.

./

char *extract connector source (connector_menu_item)
char *connector_menu_item;

[]

char *extract_connector_destination (connector_menu_item)

char *connector_menu_item;

[}

/*

char *make_port_type_menu_item (char *port, char *type);

This function returns a pointer to a port_type menu item string for

the passed port and data type.

Where:

port, type are the strings to be the <port> and <type> part of

the port-type menu item

the return value is the generated port-type menu item string

** The generated port-type meDu item will look like:
**

Aug 26 11:50 1991 charles Page 65

*W

*/

The <port> and <type>fields will have some minimum constant width
(ed: specify constant names later). The ":" will always have at least

one space on each side.

This function allocates memory for the returned string which must be
freed later.

char *make_port_type_menu_item (char *port, char *type)

char *port, *type;
[}

/*

char *extract_port_name (char *port_type_menu_item);

char *extract_type_name (char *port_type_menu_item);

These functions take a port_type menu item and extract either the port

name or data type part.

Where:

port_type_menu_item is the port-type menu item string

the return value is the <port> or <type> extraction from the

port-type menu item string

The port-type menu item string format is discussed in

make_port_type_menu_item(). These functions return either the <port>
or <type> part with no trailing spaces.

They allocate memory for the returned string which must be freed
later.

./

char *extract_port_name (port_type_menu_item)

char *port_type_menu_item;
[)

char *extract_type_name (port_type_menu_item)

char *port_type_menu_item;
[}

/*

char *make component_port_status menu item (art_symbol port);

char *make_-node_port_status_menu_item-(art_symbol port);

Aug 26 11:50 1991 charles Page 66

** These functions generate a port status menu itea_ string for a

** particular context.

** Where:

** port is the port schema that the menu item is to be generated for.

** the return value is the generated port-status menu item string
W*

W*

*W

*W

*W

*W

*W

*W

W*

make_componentport_status_menu_item() is used to generate menu items

for the Input Ports and Output Ports textlists on the Component

Details panel.

make_node_port_status_menu_item() is used to generate menu items for

the Input Ports and Output Ports textlists on the Node Details panel,

and the Graph Ports textlist on the Graph Ports Details panel.

The generated component-port-status menu item looks like:

"<name> : <type>--<notes>"

The generated node-port-status and menu item looks like:

"<name> : <type> <status>"

Where <status> is:

"<direction> <connected-node>, <connected-port>"

if the port is connectedand:

"unconnected"

otherwise.

Where:

<name> is the port name, found-in the port schema's NAME slot.

There is some minimum width for this field (ed:

specify constant value[ater,)

<type> is the port data type, found either in the port

schema's PORT-DATA-TYPE slot (if a string value), or

in the data-type schema's NAME OF DATA_TYPE slot (if a

symbol value).

<notes> is the port notes found in the port schema's NOTES slot.

<direction> is either _' from " or " to " depending on the

value in the port schema's DIRECTION slot.

Aug 26 11:50 1991 charles Page 67

*W

WW

*W

./

<connected-node> and <connected-port> are the values of the
connected node schema's NAME slot and the connected

port schema's NAME slot.

The <name>, <type> fields have a minimum width (ed: specify constant

value later). The ":" and "--" are always have at least one space on
either side. The "," never has a leading space and always has a

trailing space.

The connected node and connected port are found as follows:

The port's node is found in the port schema's ON_NODE slot. The graph
that the node is on is in found in the node schema's ON_GRAPH slot.

The graph schema's HAS_CONNECTOR_GROUPS slot lists the the connector

groups on the graph.

If the value of port schema's DIRECTION slot is INPUT, the list of

connector group schemas is searched for one that has this node in its
SOURCE NODE slot; the value in the connector group schema's

DESTINATION NODE slot is the connecting node. The connector group

schema's HAS CONNECRTORS slot lists the connectors in the connector

group. This--list is searched for one that has the passed port in its
SOURCE PORT slot. The value in the found connector schema's

DESTINATION PORT slot is the destination port. If there is no

connector group schema that has this node as its SOURCE_NODE, or there

is no connector schema that has this port as its SOURCE_PORT, then the

port is unconnected.

A similar algorithm is used if the value of the port schema's

DIRECTION slot is OUTPUT.

if the port schema's direction slot is OUTPUT, the
list of connector group schemas is searched fro one that has this node

in its DESTINATION_NODE slot.

These functions allocate memory which must be freed later.

char .make_component_port_status_menu_item (art_symbol node_port)

art_symbol node_port;

[}

char *make_node_port_status_menu_item (art_symbol node_port)

art_symbol node_port;

[}

/*

art_symbol port_status_connected_to (char *port_status_menu_item);

Aug 26 11:50 1991 charles Page 68

This function takes in a port-status menu item and returns the port

object that is connected to the port. If the port is unconnected,
then this function returns NULL

Where:

port_status_menu_item is the port-status menu item string

the return value is the port schema that the port-status menu

item indicates a connection to, or NULL

*/

MAJOR COMMENT:

- Q: HOW does this work?

A: It probably doesn't, and will need redesign.

art_symbol port_status_connected_to (port_status_menu_item)

char *port_status_menu_item;

[}

/*

** char *esl_object_type_string (art_symbol esl_object);

** char *esl_implementation_type_string (art_symbol esl_object);
*W

** These functions return a string that can be populated to a Type or

** Implementation Type static text field.

** Where:

** esl_object is an esl object schema that is an instance of
** SUBPROGRAM or NODE.

** the return value is the string that contains the description

** of the type of esl_object

W*

*/

The string is a statically constant allocated constant and may not be
freed.

For example, the string returned for PRIMITIVE_SUBPROGRAM_NODE is

"Application Procedure", for IF_NODE is "If Node", etc.

char *esl_object_type_string (esl_object)

art_symbol esl_object;

[}

Aug 26 11:50 1991 charles Page 69

char ,esl_implementat_on_type_string (art_symbol esl_object)

art_symbol esl_object;
[}

/* connector_rep.c */

/* forward declarations of useful internal connector_rep functions */

void construct_initial_connector_reps (/* art_symbol panel_schema */);

void construct_initial_port_reps (/* art_symbol panel_schema,
art_symbol node,
boolean input */);

*

connector rep *search for connector rep (art symbol panel schema,
.... char *connector_menu_item);

This function returns a pointer to the connector rep associated with

the passed connector_menu_item.

Where:

panel_schema is the Schema corresponding to the Connector
Details Panel

connector menu item is the connector menu item string. The

co--nnector menu item string format is discussed in

make_connector_menu_item_string()

the return value is a pointer to the connector rep structure
that corresponds to connector_menu_item.

** An pointer to an array of pointers to connector_rep structures is
** found in the CONNECTOR REPS slot of the passed panel schema and the

** size of that array is _tored in the CONNECTOR_REPS_SIZE slot.

For each of the connector rep structures, the strings in the

connector_rep's menu_item--member are compared with connector_menu_item
until a match is found.

If none is found, then NULL is returned.

./

Aug 26 11:50 1991 charles Page 70

connector_rep *search_for_connector_rep (panel_schema, connector_menu_item)

art symbol panel schema;
char *connector_menu_-item;

[]

/*

connector_rep *search_for_connector_rep_by_source
(art_symbol panel_schema, char *source);

connector_rep *search_for_connector_rep_by_destination
(art_symbol panel_schema, char *destination);

These functions search through a Connector Details Panel's

connector_rep structures for one that has the passed source or
destination.

Where:

panel_schema is the schema corresponding to the Connector
Details Panel

"source, destination is the value for the <source> or

<destination> part of a connector menu item string.
The connector menu item string format is discussed in

make_connector_menu_item_string()

the return value is a pointer to the connector_rep structure
for the connector that has the passed source or destination

A pointer to an array of pointers to connector_rep structures is found
in the CONNECTOR REPS slot of the passed panel_schema and the size of

that array is stored in the CONNECTOR_REPS_SIZE slot.

The strings are extracted with extract_connector_source() or

extract_connector_destination(). The strings returned by these
functions is freed here.

,/

connector_rep *search_for_connector_rep_by_source (panel_schema, source)

art_symbol panel_schema;
char *source;

[]

connector_rep *search_for_connector_rep_by_destination

(panel_schema, destination)

art_symbol panel_schema;
char *destination;

[}

Aug 26 11:50 1991 charles Page 71

/*

** void re_associate_connector (connector_rep *conn_rep, char *notes);

** This function re-associates a connector that has become unassociated

** (ie. undefined).

** Where:

** conn_rep is a pointer to a connector rep structure

** notes is the new value for the connector's notes

The value of the passed connector_rep structure's associated member is

changed from FALSE to TRUE, and a copy of the passed notes are put
into the notes member. Any previous value of the notes field is
freed.

It is an internal error for the associated field to be TRUE upon

entry. The best thing to do in this case is to do nothing.

COMMENTS:

- The panel_schema can be used to get the notes instead of their
being passed to this function.

,/

void re associate connector (conn_rep, notes)

connector_rep *conn_rep;
char *notes;
C}

I

/,
** void disassociate_connector_rep (art_symbol panel_schema,

** connector_rep *conn_rep);

** This function disassociates a connector (ie: undefines it.).

** Where:

** panel_schwa is the schea_ corresponding to the Connector
** Details Panel

** conn_rep is a pointer to a connector_rep structure

** If the connector member of conn_rep* is non-NTJI_, then the connector

** has previously existed. The assoicated member is set to FALSE and if
** the notes member is non-NULL, the string it points to is freed and the

Aug 26 11:50 1991 charles Page 72

*W

*/

notes member is made NULL.

If the connector _ember of conn_rep* is NULL, then the connector

object has never been made. The panel schema's CONNECTOR REPS slot

contains a pointer to an array of pointers to connector_rep structures

and the CONNECTOR_REPS_SIZE slot contains the size of that array.

This array is searched for a pointer that corresponds to conn_rep. If

the notes member of conn_rep* is non-NULL, then the string it points

to is freed. The memory used by the conn_rep* is also freed. The

pointer to conn_rep in the CONNECTOR REPS array is made NULL.

void disassociate_connector_rep (panel_schema, conn_rep)

art_symbol panel_schema;

connector_rep *conn_rep;

[}

/*

void construct_initial_reps (art_symbol panel_schema);

This function constructs the connector_rep structures and port_rep

structures for the passed Connector Details panel schema.

Where:

panel_schema is the schema corresponding to the Connector
Details Panel

*W

W*

Unless the panel is a Constant To panel, the input port reps are

constructed using construct_initial_port_reps(). The output port reps

are always constructed using the same function.

The connector_reps are constructed using

construct_initial_connector_reps()

,/

void construct_initial_reps (panel_schema)

art_symbol panel_schema;

[]

*

** void construct_initial_port_reps (artsymbol panel_schema,

** art_symbol node,

** _o_lean _hpU£)

** This function creates the support port_rep_ st;uctu!_esforConnector_
** Details Panels. Only one set (input or output) Is made with one call

Aug 26 11:50 1991 charles Page 73

*W

*W

*W

to this funciton. If the panel is a Node To Node Connector Details

panel this function will have to be called twice.

Where:

panel_schema is the schema corresponding to the Connector
Details Panel.

node is the node schema that the ports are attached to.

input is TRUE if the node's input ports are to be used, FALSE

if the node's output ports are to be used.

Once this is done, the panel-schema may be fed into

search_forport_rep()

The node's input ports are found in the node schema's HAS_INPUT_PORTS

slot; the output ports are found in the node schema's HAS_OUTPUT_PORTS

slot. The a pointer to an array of pointers to port_rep structures

for input ports is put in the panel-schema's INPUT_PORT_REPS slot, and

for output ports it is put in the panel'schema's OUTPUT_PORT_REPS
slot.

Memory is allocated for the an array of pointers to port reps that is

one larger than the number of ports, and also for a port_rep structure

for each port. This memory should be allocated all at once so that it
can be freed all at once.

The array is initialized with a pointer to each successive port_rep

structure, terminating with a NULL pointer.

The port_rep structures are given values by iterating over the ports
and:

filling the port member with a pointer to the port schema

filling the menu item member with a port-type menu item

created by calling cr-eate_port_type_menu_item() with the value of the

port's NAME slot and either the value of the port's PORT_DATA_TYPE (if

it is a string) or use that value to find the data-type schema and use
it's NAME OF DATA TYPE slot.

,/

void construct_initial_port_reps (panel_schema, node, input)

art_symbol panel_schema;

art_symbol node;

boolean input;

[)

*

Aug 26 11:50 1991 charles Page 74

construct_initial_connector_reps (art_symbol panel_schema)

This function creates the support connector_rep structures for

Connector Details Panels. The necessary port_rep structures should be

made first with construct_initial_port_reps()

Where:

panel_schema is the schema corresponding to the Connector
Details Panel.

Any previous values in the CONNECTOR_REPS and CONNECTOR REPS SIZE

slots are reused. If none exists, a new array is allocated with

some size (ed: specify constant value later) and its contents are made
NULL.

The connector group that the panel is for is found in the

CURRENTLY_DISPLAYED_CONNECTOR GROUP slot. The HAS_CONNECTORS slot in

the connector-group schema contains the list of connector objects.

This list is iterated over and the connector_rep structures are filled

in by add_new_connector_rep(). The connector menu items are

constructed with make_connector_menu_item().

The connector schema's SOURCE_PORT slot contains a pointer to the

source port schema of the connector and the DESTINATION_PORT slot

contains a pointer to the destination port schema.

If the panel is a Node To panel or Graph Port To panel then the source

argument to make_connector_menu_item() is found by calling

search_for_port_rep_by_port() with the port schema and using it's

menu_item member. If the panel is a To Node or To Graph Port panel

then the destination argument is found similarily.

On Constant To panels, one must use the constant value for the source

argument to make_connector_menu_item(). The constant schema is

pointed to by the connector schema's SOURCE_PORT slot, and the value
is stored in its VALUE slot.

,/

Construct_initial_connector_reps (panel_schema)

art_symbol panel_schema;

/*

connector_rep *add_new_connector_rep (art_symbol panel_schema,

char *connector_menu_item,

art_symbol connector,

Aug 26 11:50 1991 charles Page 75

** char *notes)

** This function makes a-new connector_rep structure for a new
** connection. It returns a pointer to the new connector_rep structure.

** Where:

** panel_schema is the schema corresponding to the Connector
** Details Panel

** connector_menu_item is a connector menu item string

** connector is the corresponding connector schema

** notes is the notes for the connector

** the return value is a pointer to the connector rep structure
** made.

If connector is NULL, then the connector_rep is for a newly defined

connector. This is the case when this function is called from

CD_Select_Connect().

If connector is non-NULL, then the connectorurep is for an already

existing connector. This is the case when it is called by

construct_initialreps().

The array of connector rep pointers is stored in the panel_schema's
CONNECTOR REPS slot and the current size of that array is stored in

the CONNECTOR_REPSSIZE slot. This array is scanned for a NULL

pointer. If no NULL pointer is found, then the array is enlarged as

follows:

i. Allocate memory a larger array of pointers. Change the

CONNECTOR REPS SIZE slot. The array is size increased by some

constant _alue-(ed: specify constant value later).

2. Copy the old array of pointers.

3. Free up the old array of pointers.

A new connector_rep structure is allocated and fields are filled in as

follows:

i. The menu item and notes members are set to the passed

connector menu item and a copy of notes.

2. The connector member is given the passed connector value.

The associated member is set to TRUE.

If this function fails (only possible if memory cannot be allocated),

it will return NULL.

Aug 26 11:50 1991 charles Page 76

*/

COMMENTS:

- Failure is so unexpected, that maybe it should raise a warning.

- May want to break up enlarge array functionality into another
function.

connector_rep *add_new_connector_rep (panel_schema,
connector_menu_item, connector, notes)

art_symbol panel_schema;
char *connector menu_item;

art_symbol connector;
char *notes;
[}

*

** void free_up_reps (art_symbol panel_schema);

** This function frees up memory used by the panel_schema's connector_rep
** and port_rep structures, prior to dismissing the panel.

** Where:

** panel_schema is the schema corresponding to the Connector
** Details Panel

If the panel is not a Constant To panel, a pointer to an array of

pointers to port_reps are found in the panel schema's INPUT_PORT_REPS
slot. This memory is freed here. All panlels have an

OUTPUT_PORT_REPS slot which points to memory which must be similarily
freed.

This function iterates over the array of p0inters to connector_rep

structures found in the panel_schema's CONNECTOR_REPS slots. The size

of the array is stored in the CONNECTOR_REPS_SIZE slot.

**_:_ _ _ _ _ by** ** All connector_rep structs pointed to the CONNECTOR_REPS array have
** their menu item and notes member strings freed. Then the memory used

** by the conn-ector_rep structure is then freed and the pointers in the

** array are set to NULL.

,/

void free_up_reps (panel_schema)

artsymbol panel_schema;
[}

Aug 26 11:50 1991 charles Page 77

*

** void create_and_destroy_changed_connectors (art_symbol panel_schema);

** This function creates a connector schema for each newly defined

** connector, modifies connectors with changed definitions, and destroys

** newly undefined connectors.

** Where:

** panel_schema is the schema corresponding to the Connector
** Details Panel

*W

WW

*/

It iterates over the array of pointers to connector_reps found in the

CONECTOR REPS slot of the passed panel_schema. The size of that array

is found in the CONNECTOR_REPS_SIZE slot.

For each connector rep structure pointed to:

- If the value of connector member is non-NULL and associated

is FALSE, then the corresponding connector schema must be destroyed.

This requires that:

i. The connector group schema no longer reference it.

2. The memory used by the menu item and notes fields

is freed. The memory used by the connector_rep is also freed. The

pointer to the connector_rep structure is set to NULL.

3. The connector schema be deleted

- If the value of the connector member is non-_ and

associated is TRUE, then the corresponding connector schema may need

to have their NOTES slots changed. The notes member contains current

notes.

- if the value of connector member is NULL and associated is

TRUE, then a new connector object must be created. This requires

that:

i. A new connector schema is made with NOTES and

BELONGS TO CONNECTOR_GROUP slots filled in.

2. The connector group must reference this new

connector object in its HAS_CONNECTORS slot.

3. The connector field in the connector_rep must point

the new connector object.

Aug 26 11:50 1991 charles Page 78

void create_and_destroy_changed_connectors (panel_schema)
art_symbol panel_schema;
[}

/*

port_rep *search_for_port_rep_by_menu_item (art_symbol panel_schema,

char *port_type_menu_item,

boolean input);

port_rep *search_for_port_rep_by_port (art_symbol panel_schema,
art_symbol port,

boolean input);

These functions searche for the port_rep structure that corresponds to

a port-type menu item or port schema, given the port direction.

Where:

panel_schema is the schema corresponding to the Connector
Details Panel

port_type_menu_item is the port-type menu item to be searched

for. port-type menu item format is discussed in

construct_port_type_menu_item()

port is the port schema

input is TRUE if the port is an input port, FALSE otherwise

If input is TRUE, the panel schema's INPUT_PORT_REPS slot is used for
the search. Otherwise, the panel schema's OUTPUT_PORT_REPS slot is

used.

The panel schema's [INPUT IOUTPUT]_PORT_REPS slot contains a pointer to

a NLri_ terminated array of pointers to port_rep structures.

search_for_port_rep_by_menu_item() searches these port_rep structures
for one that has its menu item member that strcmp() with the passed

port-type menu item.

search_for_port_rep_by_port compares the port_rep's port member with

the passed port (ed: with a_eq or - ?).

COMMENTS:

- It is an internal error to for the panel schema not to have the

proper slot, or for there to be no value in this slot. Since it is

probably caused by a logic flaw we will want fixed, a warning message

shouldbe generated.

Aug 26 11:50 1991 charles Page 79

*W

,/

port_rep *search_for_port_rep_by_menu_item (panel_schema,
port_type_menu_item, input);

art_symbol panel_schema;

char *port_type_menu_item;

boolean input;

port_rep *search_for_port_rep_by_port (panel_schema, port, input)

art_symbol panel_schema;

art_symbol port;

boolean input;

[}

/* populate.c */

W

"art_symbol populate_new_connector_detailspanel

(art_symbol connector_group);

This function populates a new Connector Details panel for the passed

source and destination objects. The type of panel is determined by

the types of the source and destination objects. The panel schema

associated with the new panel is returned.

Where:

connector_group is the connector-group schema that the
Connector Details Panel is for.

the returned value is the schema that corresponds to the new

Connector Details Panel

*WW*W*W*

The panel schema is found with find_screen_schema() (?).

After putting the connector_group in the

CURRENTLY_DISPLAYED_CONNECTOR_GROUP slot, the connector_reps are

constructed with construct_initial_reps().

The connectors textlist is populated with

populate_connectors_textlist().

No item is selected in the connectors textlist. The Notes field is

also cleared.

MAS: More needs to be done, but I'm not sure about how and I'll think about

it later:

Aug 26 11:50 1991 charles Page 80

** I. Sources textlist and Destinations textlist for Node To and

** To Node panels. Titles of textlists too.

** 2. The Constant source, the Graph Port Name fields must be populated

MAS:

here is the time for port rep structures.

CD_Select_Source(), etc.

Also look for

./

art_symbol populate new_connectordetails_panel (connector group)
artsymbol connector_group;

** void populate_connectors_textlist (artsymbol panel_schema);

** This function populates the connectors textlist.

** Where:

** panel_schema is the schema corresponding to the Connector
** Details Panel
**

ww

e.

A pointer to an array of pointers to the connector_rep structures is
found in the panel schema's CONNECTOR REPS slot and the size of this
array is found in the CONNECTOR_REPS_SIZE slot. This array is

iterated over and connector rep structs pointed to have their
menu item member as one of the items populated in the connectors
textlist, if their associated member is TRUE.

COMMENTS:

This function is so simple, does it need to be?

,/

void populate_connectors_textlist (panelschema)
artsymbol panel_schema;

[]

*

art_symbol populate_new_node_details_panel (art_symbol node);

This function creates, populates, and pops up a Node Details panel.

Aug 26 11:50 1991 charles Page 81

** Where:

** node is the m:_e schema that the panel is for

** the return value is the schema that corresponds to the Node
** Details Panel.

Must populate the following fields:

- Name text field (from node's NAME slot)

- Type static text (using esl_object_type_string())

- On Graph static text (from node's ON_GRAPH slot)

- Input Ports and Output Ports textlists (from node's

HAS_INPUT_PORTS and HAS_OUTPUT_PORTS slots and
make_port_status_menu_item())

The memory allocated by make_port_status_menu_item() is freed here.

,/

art_symbol populate_new_node_details_panel (node)
art_symbol node;
[}

W

WW

art_symbol populate_new_component_details_panel
(art_symbol component);

This function creates, populates, and pops up a Component Details
panel.

Where:

component is the component schema the panel is for

the return value is the schema that corresponds to the
** Component Details Panel

** Must populate the following fields:

** - Name static text (from component's NAME slot)

** - Type static text (using esl_object_type_string())

** - Input Ports and Output Ports textlists (from component's
** HAS INPUT PORTS and HAS OUTPUT PORTS slots and also

** using make_port_status_menu_item())

Aug 26 11:50 1991 charles Page 82

*W

*/

- Implementation static text fields:

Type (using eslimplementation_type_string())

Package name (either the constant EMPTY_PACKAGE_NAME or

from the components HAS_IMPLEMENTATION slot

and the implementation schema's
NAME OF PACKAGE slot, if it is an instance of

PACKAGE_IMPLEMENTATION)

Spec and Body filename (if implementation schema is
instance of INLINE IMPLEMENTATION, then the

constant string NO--FILE FILENAME. If

implementation schema is instance of

SEPARATELY_COMPILED_PROCEDURE then it is the

SOURCE_FILE_NAME slot for the spec and the
NO FILE FILENAME constant for the body. If

the implementation schema is an instance of

PACKAGE_IMPLEMENTATION, then the slots

PACKAGE_SPEC_FILE_NAME and

PACKAGE_BODY_FILE_NAME are used.)

- Node instances textlist (from the component's
CORRESPONDS TO NODES slot and the respective node's

NAME slot)

The memory allocated by make_port_status_menu_item() is freed here.

art_symbol populate_new_component_details_panel (component)

art_symbol component;

[}

/*

** art_symbol populate_new_graph_port_details_panel (art_symbol graph,
** boolean input);

**

** This function creates, populates, and pops up a Graph Port Details

** panel.

** Where:

** graph is the graph schema that the panel is for

** input is TRUE if the panel is for graph _input_ ports, FALSE

** it the pane is for graph _output_ ports.

** the return value is the schema that corresponds to the Graph

** Port Details Panel.

** Must populate the following fields:

Aug 26 11:50 1991 charles Page 83

*/

- Name static text (from graph's NAME slot)

- Graph Port_ textlist

Title is either GRAPH INPUT PORTS STRING or

GRAPH OUTPUT_PORTS STRING c_nstants.

Items-made with make_port_status_menu_item()

The memory allocated by make_port_status_menu_item() is freed here.

art_symbol populate_new_graph_port_details_panel (graph, input)

art_symbol graph;

boolean input;

[}

*

W*

*W

art_symbol populate_new_node_notes_panel (art_symbol node);

This function creates, populates, and pops up a Node Notes panel.

Where:

node is the node schema that the panel is for

*/

the return value is the schema that corresponds to the Node

Notes Panel.

Must populate the following fields:

- Name static text (from node's NAME slot)

- Type static text (using esl_object_type_strlng())

- Component notes textdisp (from node's uses-subprogram slot or a

constant string and the subprogram's NOTES slot)

- Node notes pageedit (from node's NOTES slot)

art_symbol populate_new_node_notes_panel (node)

art_symbol node;

[}

/*

art_symbol populate_new_component_notes_panel (art_symbol component);

This function creates, populates, and pops up a Component Notes panel.

Aug 26 11:50 1991 charles Page 84

** Where:

** component is &he componenent schema that the panel is for

** the return value is the schema that corresponds to the Component
** Notes Panel.

W***W*WW

** Must populate the following fields:
**

** - Name static text (from component's NAME slot)

** - Type static text (using esl_object_type_string())

** - Component Notes textdisp field (from component's NOTES slot)

./

art_symbol populate_new_component_notes_panel (component)
art_symbol component;

[}

/* MAS: explain the return value.., must be allocated */

/*

*W

char *select_constant_value_modal_panel
(char *data_type,

art_symbol parent_panel);

This function creates, populates, and pops up a modal Select Constant

Value panel. The panel has exclusive focus. Control is returned to
the caller only after the user selects either the Ok or Cancel button.

Where:

data_type is the String for the data type that the panel is

for. Will probably be changed to an art_symbol for
the data-type schema.

the return value is the constant value string the user
selected from the Defined Values textlist if Ok is

selected, or NULL if Cancel is selected.

WW

** Must populate the following fields:

** - Data type - (from passed argument)

** - Defined values (from the data type schema's DEFINED_VALUES slot)

_W

** COMMENTS:

Aug 26 11:50 1991 charles Page 85

*/

Mapping between data type name and data type schema must be found.

char *select_constant_value_modal_panel (data_type, parent_panel)
char *data_type;

art_symbol parent_panel;
[}

/, misc.c */

*

** boolean propogate_constraints();

** This function propogates constraints.

** Where:

** the return value is FALSE if constraints are violated, TRUE
** otherwise.

** EWR knows how to write this function.

./

boolean propogate_constraints()
[}

/*

boolean type_check_constant (char *constant_value,

char *data_type);

This function checks to see if a constant value is legal for a
particular data type.

Where:

constant_value is the string of the constant value to be checked

data_type is the string of the data type name. This will

probably be changed to be a data type schema.

the return value is TRUE if constant_value is valid for data_type.

** First get data type schema (how?).

Aug 26 11:50 1991 charles Page 86

*/

If the data type is BOOLEAN, INTEGER, FLOAT, or STRING, then check

first with legal_boolean_constant_p(), legal_integer_constant_p(),

legal_float_const_nt_p(), or legal_string_constant_p().

If that test fails then check if the value is on the data type

schema's DEFINED VALUES slot.

If that test fails then call the function in the data type schema's

TEST FUNCTION slot.

If all tests fail, return FALSE.

COMMENTS:

- Mapping between data type string and data type schema must

be found.

boolean type_check_constant (char *constant_value,
char *data_type)

char *constant_value, *data_type;

[}

/*

boolean type_check_graph_port (char *graph_port_name,
char *data_type);

This function checks to see if a particular Graph Port is legal for a

to be connected to a port with some data type.

Where:

graph_port name is the name of the graph por_ to be connected.

This will probably be changed to be a graph_port schema.

data_type is the string of the data type name. This will

probably be changed to be a data type schema.

the return value is TRUE if the graph port may be connected to

a port with the passed data type.

First find the graph port schema and the data type schema.

If the graph port schema doesn't exist, then it is new, and therefore

Ok.

Otherwise, the graph port schema's PORT DATA_TYPE slot points to the

port's data type schema. The data typeis NAME OF DATA_TYPE slot
contains the data type name. It must compare with the passed data

type.

v

Aug 26 11:50 1991 charles Page 87

,/

COMMENTS:

- Mapping to graph_port schema and data type schema is

necessary.

boolean type_check_graph_port (graph_port_name, data_type)

char *graphport_name, data_type;

[]

*

boolean legal_boolean_constant_p (char *boolean_constant);

boolean legal_integer_constant_p (char *integer_constant);

boolean legal_float_constant_p (char *float_constant);

boolean legal_string_constant_p (char *string_constant);

Thes functions check to see if a value is of a particular Ada

predefined type.

Where

boolean_constant, integer_constant, float_constant,

string_constant are strings with the value to be checked

the return value is TRUE if the argument is of the type being

checked, FALSE otherwise.

Legal boolean values are "TRUE", "FALSE", or any casification of those

two. Convert the passed string to uppercase and compare with "TRUE"
and "FALSE".

Legal integers are: digit [digit]* (ie: "123")

Legal floats are: digit [digit]* "." [digit]* ["E" ["+" I "-"] [digit]*]

** "Legal strings are: "\"" [char]* "\""

*/

COMMENTS:

- Another legal integer is: integer "#" integer++ "#".

first integer is the base. The second integer has broader

interpretations. (ie: 16#I2FA#)

The

Aug 26 11:50 1991 charles Page 88

boolean legal_boolean_constant_p (boolean_constant)
char *boolean_constant;
{]

boolean legal_integer_constantp (integer_constant)
char *integer_constant;
[}

boolean legal_float_constant_p (float_constant)

char *float_constant;
[}

0
F

boolean legal_string_constant_p (string_constant)

char *string_constant;
[}

